42 research outputs found

    Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference

    Get PDF
    Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward

    Resolving the neural circuits of anxiety

    Get PDF
    Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Distinct extended amygdala circuits for divergent motivational states

    No full text
    The comorbidity of anxiety and dysfunctional reward processing in illnesses such as addiction(1) and depression(2) suggests that common neural circuitry contributes to these disparate neuropsychiatric symptoms. The extended amygdala, including the bed nucleus of the stria terminalis (BNST), modulates fear and anxiety(3,4), but also projects to the ventral tegmental area (VTA) (5,6), a region implicated in reward and aversion(7–13), thus providing a candidate neural substrate for integrating diverse emotional states. However, the precise functional connectivity between distinct BNST projection neurons and their postsynaptic targets in the VTA, as well as the role of this circuit in controlling motivational states have not been described. Here, we recorded and manipulated the activity of genetically and neurochemically identified VTA-projecting BNST neurons in freely behaving mice. Collectively, aversive stimuli exposure produced heterogeneous firing patterns in VTA-projecting BNST neurons. In contrast, in vivo optically-identified glutamatergic projection neurons displayed a net enhancement of activity to aversive stimuli, whereas the firing rate of identified GABAergic projection neurons was suppressed. Channelrhodopsin-2 (ChR2) assisted circuit mapping revealed that both BNST glutamatergic and GABAergic projections preferentially innervate postsynaptic non-dopaminergic VTA neurons, thus providing a mechanistic framework for in vivo circuit perturbations. In vivo photostimulation of BNST glutamatergic projections resulted in aversive and anxiogenic behavioral phenotypes. In contrast, activation of BNST GABAergic projections produced rewarding and anxiolytic phenotypes, which were also recapitulated by direct inhibition of VTA GABAergic neurons. These data demonstrate that functionally opposing BNST to VTA circuits regulate rewarding and aversive motivational states and may serve as a critical circuit node for bidirectionally normalizing maladaptive behaviors

    Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

    Get PDF
    Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation

    Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking

    No full text
    Interactions between the basolateral amygdala (BLA) and nucleus accumbens (NAc) are involved in a number of reward-processing and addictive behaviours, but our understanding of the precise role of each of these brain areas has been limited by the inability to manipulate pathways selectively during behaviour. Stuber et al. use optogenetic technologies, in which light selectively activates or inhibits genetically-defined neuronal subpopulations, to reveal an unexpected role for the BLA a brain region usually associated with aversive behaviours. The BLA is shown to be important for processing both positive and negative effects, but glutamatergic pathways between the BLA and NAc are specifically associated with reward-seeking behaviours
    corecore