2,103 research outputs found

    Relocation and investment in R&D by firms

    Get PDF
    The literature on foreign direct investment has analyzed corporate location decisions when firms invest in R&D to reduce production costs. Such firms may set up new plants in other developed countries while maintaining their domestic plants. In contrast, we here consider firms that close down their domestic operations and relocate to countries where wage costs are lower. Thus, we assume that firms may reduce their production costs by investing in R&D and likewise by moving their plants abroad. We show that these two mechanisms are complementary. When a firm relocates it invests more in R&D than when it does not change its location and, therefore, its production cost is lower in the first case. As a result, investment in R&D encourages firms to relocate.info:eu-repo/semantics/publishedVersio

    Phase II Study of Bevacizumab in Combination with Trastuzumab and Capecitabine as First-Line Treatment for HER-2-positive Locally Recurrent or Metastatic Breast Cancer

    Get PDF
    The first results from a phase II, open-label study designed to evaluate the efficacy and safety of bevacizumab in combination with trastuzumab and capecitabine as first-line therapy for patients with human epidermal growth factor receptor-2–positive locally recurrent or metastatic breast cancer are reported

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy

    Get PDF
    The epidermal growth factor receptor (EGFR) is a validated target in squamous cell carcinoma (SCC) of the head and neck. Most patients, however, do not respond or develop resistance to this agent. Mammalian target of rapamycin (mTOR) is involved in the pathogenesis of SCC of the head and neck (SCCHN). This study aimed to determine if targeting mTOR in combination with EGFR is effective in SCC, and to develop early pharmacodynamic markers of efficacy. Two SCC cell lines, one resistant (HEP2) and one of intermediate susceptibility (Detroit 562) to EGFR inhibitors, were xenografted in vivo and treated with an mTOR inhibitor (temsirolimus), an EGFR inhibitor (erlotinib) or a combination of both. Temsirolimus exerted superior growth arrest in both cell lines than erlotinib. The combined treatment resulted in synergistic antitumor effects in the Detroit 562 cell line. Immunohistochemical assessment of pharmacodynamic effects in fine-needle aspiration (FNA) biopsies early after treatment using phospho MAPK, Phospho-P70 and Ki67 as end points demonstrated pathway abrogation in the Detroit 562 tumours treated with the combination, the only group where regressions were seen. In conclusion, an mTOR inhibitor showed antitumor activity in EGFR-resistant SCC cell lines. Marked antitumor effects were associated with dual pathway inhibition, which were detected by early FNA biopsies

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo

    Get PDF
    Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
    corecore