106 research outputs found

    Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory

    Get PDF
    Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil

    Pregabalin, celecoxib, and their combination for treatment of chronic low-back pain

    Get PDF
    Background - The efficacy and safety of the association of celecoxib [a selective cyclooxygenase-2 (COX-2) inhibitor] and pregabalin (commonly used to control neuropathic pain), compared with monotherapy of each, were evaluated for the treatment of chronic low-back pain, a condition known to be due to neuropathic as well as nociceptive pain mechanisms. Materials and methods - In this prospective randomized trial, 36 patients received three consecutive 4-week treatment regimes, randomly assigned: celecoxib plus placebo, pregabalin plus placebo, and celecoxib plus pregabalin. All patients were assessed by using a visual analogue scale (VAS, 0\u2013100 mm) and the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) pain scale by an investigator blinded to the administered pharmacological treatment. Results - Celecoxib and pregabalin were effective in reducing low-back pain when patients were pooled according to LANSS score. The association of celecoxib and pregabalin was more effective than either monotherapy in a mixed population of patients with chronic low-back pain and when data were pooled according to LANSS score. Adverse effects of drug association and monotherapies were similar, with reduced drug consumption in the combined therapy. Conclusions - Combination of celecoxib and pregabalin is more effective than monotherapy for chronic low-back pain, with similar adverse effects

    Self-assisted Amoeboid Navigation in Complex Environments

    Full text link
    Background: Living cells of many types need to move in response to external stimuli in order to accomplish their functional tasks; these tasks range from wound healing to immune response to fertilization. While the directional motion is typically dictated by an external signal, the actual motility is also restricted by physical constraints, such as the presence of other cells and the extracellular matrix. The ability to successfully navigate in the presence of obstacles is not only essential for organisms, but might prove relevant in the study of autonomous robotic motion. Methodology/principal findings: We study a computational model of amoeboid chemotactic navigation under differing conditions, from motion in an obstacle-free environment to navigation between obstacles and finally to moving in a maze. We use the maze as a simple stand-in for a motion task with severe constraints, as might be expected in dense extracellular matrix. Whereas agents using simple chemotaxis can successfully navigate around small obstacles, the presence of large barriers can often lead to agent trapping. We further show that employing a simple memory mechanism, namely secretion of a repulsive chemical by the agent, helps the agent escape from such trapping. Conclusions/significance: Our main conclusion is that cells employing simple chemotactic strategies will often be unable to navigate through maze-like geometries, but a simple chemical marker mechanism (which we refer to as "self-assistance") significantly improves success rates. This realization provides important insights into mechanisms that might be employed by real cells migrating in complex environments as well as clues for the design of robotic navigation strategies. The results can be extended to more complicated multi-cellular systems and can be used in the study of mammalian cell migration and cancer metastasis

    The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    Get PDF
    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake

    Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    Get PDF
    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle

    Mesenchymal tumours of the mediastinum—part II

    Get PDF
    corecore