5,065 research outputs found

    Weed management in banana production: The use of Nelsonia canescens (Lam.) Spreng as a nonleguminous cover crop

    Get PDF
    During a survey of weeds in the Tiko banana plantations, the plant Nelsonia canescens (Lam.) Spreng was found to have invaded large areas of the plantation with no visible adverse effects on the banana crop. The effects of this Acanthaceae on banana yield parameters, snails’ population and weed species diversity and abundance were evaluated, with the intension of recommending the plant as a cover crop in weed management in banana plantations. Of the 73 weed species identified in Tiko banana plantation, only nine were found growing in association with N. canescens. These weed species also showed reduced abundance and vigour. The reduction in abundance ranged from 60 to 100%. The reduction in abundance was more pronounced during the dry season when cover crop growth was dense, than in the rainy season when there was reduced growth. The pseudo - stem circumference, bunch weight and hand class were significantly higher (p > /0.05) for plants grown with cover crop than for those grown without. The number of snails on and around the pseudo - stem was also significantly reduced in banana grown with N. canescens cover crop than in plants grown without. N. canescens has an added advantage in that it is prostrate and does not climb on the banana pseudo - stem. This may be a good alternative weed management tool in banana production. The techniques of mass production need to be developed

    What went wrong? The flawed concept of cerebrospinal venous insufficiency

    Get PDF
    In 2006, Zamboni reintroduced the concept that chronic impaired venous outflow of the central nervous system is associated with multiple sclerosis (MS), coining the term of chronic cerebrospinal venous insufficiency ('CCSVI'). The diagnosis of 'CCSVI' is based on sonographic criteria, which he found exclusively fulfilled in MS. The concept proposes that chronic venous outflow failure is associated with venous reflux and congestion and leads to iron deposition, thereby inducing neuroinflammation and degeneration. The revival of this concept has generated major interest in media and patient groups, mainly driven by the hope that endovascular treatment of 'CCSVI' could alleviate MS. Many investigators tried to replicate Zamboni's results with duplex sonography, magnetic resonance imaging, and catheter angiography. The data obtained here do generally not support the 'CCSVI' concept. Moreover, there are no methodologically adequate studies to prove or disprove beneficial effects of endovascular treatment in MS. This review not only gives a comprehensive overview of the methodological flaws and pathophysiologic implausibility of the 'CCSVI' concept, but also summarizes the multimodality diagnostic validation studies and open-label trials of endovascular treatment. In our view, there is currently no basis to diagnose or treat 'CCSVI' in the care of MS patients, outside of the setting of scientific research

    Noise auto-correlation spectroscopy with coherent Raman scattering

    Full text link
    Ultrafast lasers have become one of the most powerful tools in coherent nonlinear optical spectroscopy. Short pulses enable direct observation of fast molecular dynamics, whereas broad spectral bandwidth offers ways of controlling nonlinear optical processes by means of quantum interferences. Special care is usually taken to preserve the coherence of laser pulses as it determines the accuracy of a spectroscopic measurement. Here we present a new approach to coherent Raman spectroscopy based on deliberately introduced noise, which increases the spectral resolution, robustness and efficiency. We probe laser induced molecular vibrations using a broadband laser pulse with intentionally randomized amplitude and phase. The vibrational resonances result in and are identified through the appearance of intensity correlations in the noisy spectrum of coherently scattered photons. Spectral resolution is neither limited by the pulse bandwidth, nor sensitive to the quality of the temporal and spectral profile of the pulses. This is particularly attractive for the applications in microscopy, biological imaging and remote sensing, where dispersion and scattering properties of the medium often undermine the applicability of ultrafast lasers. The proposed method combines the efficiency and resolution of a coherent process with the robustness of incoherent light. As we demonstrate here, it can be implemented by simply destroying the coherence of a laser pulse, and without any elaborate temporal scanning or spectral shaping commonly required by the frequency-resolved spectroscopic methods with ultrashort pulses.Comment: To appear in Nature Physic

    The origin of defects induced in ultra-pure germanium by Electron Beam Deposition

    Get PDF
    The creation of point defects in the crystal lattices of various semiconductors by subthreshold events has been reported on by a number of groups. These observations have been made in great detail using sensitive electrical techniques but there is still much that needs to be clarified. Experiments using Ge and Si were performed that demonstrate that energetic particles, the products of collisions in the electron beam, were responsible for the majority of electron-beam deposition (EBD) induced defects in a two-step energy transfer process. Lowering the number of collisions of these energetic particles with the semiconductor during metal deposition was accomplished using a combination of static shields and superior vacuum resulting in devices with defect concentrations lower than 1011 10^{11}\,cm3^{-3}, the measurement limit of our deep level transient spectroscopy (DLTS) system. High energy electrons and photons that samples are typically exposed to were not influenced by the shields as most of these particles originate at the metal target thus eliminating these particles as possible damage causing agents. It remains unclear how packets of energy that can sometimes be as small of 2eV travel up to a μ\mum into the material while still retaining enough energy, that is, in the order of 1eV, to cause changes in the crystal. The manipulation of this defect causing phenomenon may hold the key to developing defect free material for future applications.Comment: 18 pages, 9 figure

    The actions of methotrexate on endothelial cells are dependent on the shear stress-induced regulation of one carbon metabolism

    Get PDF
    Objectives: The disease-modifying anti-rheumatic drug methotrexate (MTX) is recognized to reduce cardiovascular risk in patients with systemic inflammatory diseases. However, the molecular basis for these cardioprotective effects remains incompletely understood. This study evaluated the actions of low-dose MTX on the vascular endothelium. Methods: Human endothelial cells (EC) were studied under in vitro conditions relevant to inflammatory arthritis. These included culture in a pro-inflammatory microenvironment and exposure to fluid shear stress (FSS) using a parallel plate model. Respectively treated cells were analyzed by RNA sequencing and quantitative real-time PCR for gene expression, by immunoblotting for protein expression, by phosphokinase activity arrays, by flow cytometry for cell cycle analyses and by mass spectrometry to assess folate metabolite levels. Results: In static conditions, MTX was efficiently taken up by EC and caused cell cycle arrest concurrent with modulation of cell signaling pathways. These responses were reversed by folinic acid (FA), suggesting that OCM is a predominant target of MTX. Under FSS, MTX did not affect cell proliferation or pro-inflammatory gene expression. Exposure to FSS downregulated endothelial one carbon metabolism (OCM) as evidenced by decreased expression of key OCM genes and metabolites. Conclusion: We found that FSS significantly downregulated OCM and thereby rendered EC less susceptible to the effects of MTX treatment. The impact of shear stress on OCM suggested that MTX does not directly modulate endothelial function. The cardioprotective actions of MTX likely reflect direct actions on inflammatory cells and indirect benefit on the vascular endothelium

    Vascular health, diabetes, APOE and dementia: the Aging, Demographics, and Memory Study.

    Get PDF
    INTRODUCTION: Evidence from clinical samples and geographically limited population studies suggests that vascular health, diabetes and apolipoprotein epsilon4 (APOE) are associated with dementia. METHODS: A population-based sample of 856 individuals aged 71 years or older from all contiguous regions of the United States received an extensive in-home clinical and neuropsychological assessment in 2001-2003. The relation of hypertension, diabetes, heart disease, stroke, medication usage, and APOE epsilon4 to dementia was modelled using adjusted multivariable logistic regression. RESULTS: Treated stroke (odds ratio [OR] 3.8, 95% confidence interval [CI] 2.0, 7.2), untreated stroke (OR 3.5, 95% CI 1.7, 7.3), and APOE epsilon4 (OR 2.8, 95% CI 1.7, 4.5) all increased the odds of dementia. Treated hypertension was associated with lower odds of dementia (OR 0.5, 95% CI 0.3, 1.0). Diabetes and heart disease were not significantly associated with dementia. A significant interaction was observed between APOE epsilon4 and stroke (P = 0.001). CONCLUSIONS: Data from the first dementia study that is representative of the United States population suggest that stroke, the APOE epsilon4 allele and their interaction are strongly associated with dementia.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A Revised Design for Microarray Experiments to Account for Experimental Noise and Uncertainty of Probe Response

    Get PDF
    Background Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Results Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. Conclusion The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Increased vascular contractility in hypertension results from impaired endothelial calcium signaling

    Get PDF
    Endothelial cells line all blood vessels and are critical regulators of vascular tone. In hypertension, disruption of endothelial function alters the release of endothelial-derived vasoactive factors and results in increased vascular tone. Although the release of endothelial-derived vasodilators occurs in a Ca2+-dependent manner, little is known on how Ca2+ signaling is altered in hypertension. A key element to endothelial control of vascular tone is Ca2+ signals at specialized regions (myoendothelial projections) that connect endothelial cells and smooth muscle cells. This work describes disruption in the operation of this key Ca2+ signaling pathway in hypertension. We show that vascular reactivity to phenylephrine is increased in hypertensive (spontaneously hypertensive rat) when compared with normotensive (Wistar Kyoto) rats. Basal endothelial Ca2+ activity limits vascular contraction, but that Ca2+-dependent control is impaired in hypertension. When changes in endothelial Ca2+ levels are buffered, vascular contraction to phenylephrine increased, resulting in similar responses in normotension and hypertension. Local endothelial IP3(inositol trisphosphate)-mediated Ca2+ signals are smaller in amplitude, shorter in duration, occur less frequently, and arise from fewer sites in hypertension. Spatial control of endothelial Ca2+ signaling is also disrupted in hypertension: local Ca2+ signals occur further from myoendothelial projections in hypertension. The results demonstrate that the organization of local Ca2+ signaling circuits occurring at myoendothelial projections is disrupted in hypertension, giving rise to increased contractile responses

    Central Coherence in Eating Disorders: A Synthesis of Studies Using the Rey Osterrieth Complex Figure Test

    Get PDF
    Background: Large variability in tests and differences in scoring systems used to study central coherence in eating disorders may lead to different interpretations, inconsistent findings and between study discrepancies. This study aimed to address inconsistencies by collating data from several studies from the same research group that used the Rey Osterrieth Complex Figure Test (Rey Figure) in order to produce norms to provide benchmark data for future studies. Method: Data was collated from 984 participants in total. Anorexia Nervosa, Bulimia Nervosa, recovered Anorexia Nervosa, unaffected family members and healthy controls were compared using the Rey Figure. Results: Poor global processing was observed across all current eating disorder sub-groups and in unaffected relatives. There was no difference in performance between recovered AN and HC groups. Conclusions: This is the largest dataset reported in the literature and supports previous studies implicating poor global processing across eating disorders using the Rey Figure. It provides robust normative data useful for future studies
    corecore