205 research outputs found

    Reading Text Increases Binocular Disparity in Dyslexic Children

    Get PDF
    Children with developmental dyslexia show reading impairment compared to their peers, despite being matched on IQ, socio-economic background, and educational opportunities. The neurological and cognitive basis of dyslexia remains a highly debated topic. Proponents of the magnocellular theory, which postulates abnormalities in the M-stream of the visual pathway cause developmental dyslexia, claim that children with dyslexia have deficient binocular coordination, and this is the underlying cause of developmental dyslexia. We measured binocular coordination during reading and a non-linguistic scanning task in three participant groups: adults, typically developing children, and children with dyslexia. A significant increase in fixation disparity was observed for dyslexic children solely when reading. Our study casts serious doubts on the claims of the magnocellular theory. The exclusivity of increased fixation disparity in dyslexics during reading might be a result of the allocation of inadequate attentional and/or cognitive resources to the reading process, or suboptimal linguistic processing per se

    Functional Subsystems and Quantum Redundancy in Photosynthetic Light Harvesting

    Full text link
    The Fenna-Matthews-Olson (FMO) antennae complex, responsible for light harvesting in green sulfur bacteria, consists of three monomers, each with seven chromophores. Here we show that multiple subsystems of the seven chromophores can transfer energy from either chromophore 1 or 6 to the reaction center with an efficiency matching or in many cases exceeding that of the full seven chromophore system. In the FMO complex these functional subsystems support multiple quantum pathways for efficient energy transfer that provide a built-in quantum redundancy. There are many instances of redundancy in nature, providing reliability and protection, and in photosynthetic light harvesting this quantum redundancy provides protection against the temporary or permanent loss of one or more chromophores. The complete characterization of functional subsystems within the FMO complex offers a detailed map of the energy flow within the FMO complex, which has potential applications to the design of more efficient photovoltaic devices

    Abeta42-Induced Neurodegeneration via an Age-Dependent Autophagic-Lysosomal Injury in Drosophila

    Get PDF
    The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury

    Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol) on apoptosis and proliferation of cultured granulosa cells from equine ovaries

    Get PDF
    BACKGROUND: The mycotoxin zearalenone (ZEA) and its derivatives, alpha and beta-zearalenol (alpha and beta-ZOL), synthesized by genera Fusarium, often occur as contaminants in cereal grains and animal feeds. The importance of ZEA on reproductive disorders is well known in domestic animals species, particularly in swine and cattle. In the horse, limited data are available to date on the influence of dietary exposure to ZEA on reproductive health and on its in vitro effects on reproductive cells. The aim of this study was to evaluate the effects of ZEA and its derivatives, alpha and beta-ZOL, on granulosa cells (GCs) from the ovaries of cycling mares. METHODS: The cell proliferation was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test after 3 days exposure at different concentrations of ZEA and its derivatives (from 1 × 10-7 to 0.1 microM). The apoptosis induction was evaluated after 1 day exposure, by DNA analysis using flow cytometry. RESULTS: An increase in cell proliferation with respect to the control was observed in the presence of ZEA at 1 × 10-3 and 1 × 10-4 microM and apoptosis was induced by all mycotoxins at different concentrations. CONCLUSION: The simultaneous presence of apoptosis and proliferation in GC cultures treated with zearalenones could indicate that these mycotoxins could be effective in inducing follicular atresia. These effects of zearalenones may result from both direct interaction with oestrogen-receptors as well as interaction with the enzymes 3alpha (beta)-hydroxysteroid dehydrogenase (HSD), involved in the synthesis and metabolism of endogenous steroid hormones. These cellular disturbances, described for the first time in equine GCs cultured in vitro, could be hypothesized as referred to reproductive failures of unknown ethiology in the mare

    Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo

    Get PDF
    Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle

    Trait phenomenological control predicts experience of mirror synaesthesia and the rubber hand illusion

    Get PDF
    In hypnotic responding, expectancies arising from imaginative suggestion drive striking experiential changes (e.g., hallucinations) — which are experienced as involuntary — according to a normally distributed and stable trait ability (hypnotisability). Such experiences can be triggered by implicit suggestion and occur outside the hypnotic context. In large sample studies (of 156, 404 and 353 participants), we report substantial relationships between hypnotisability and experimental measures of experiential change in mirror-sensory synaesthesia and the rubber hand illusion comparable to relationships between hypnotisability and individual hypnosis scale items. The control of phenomenology to meet expectancies arising from perceived task requirements can account for experiential change in psychological experiments

    A glial amino-acid transporter controls synapse strength and courtship in Drosophila

    Get PDF
    Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically
    corecore