90 research outputs found
Replicating viral vector platform exploits alarmin signals for potent CD8<sup>+</sup> T cell-mediated tumour immunotherapy.
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL <sup>eff</sup> ) responses. Conversely, the induction of protective tumour-specific CTL <sup>eff</sup> and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL <sup>eff</sup> responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL <sup>eff</sup> influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy
Ring vaccination with rVSV-ZEBOV under expanded access in response to an outbreak of Ebola virus disease in Guinea, 2016: an operational and vaccine safety report.
BACKGROUND: In March, 2016, a flare-up of Ebola virus disease was reported in Guinea, and in response ring vaccination with the unlicensed rVSV-ZEBOV vaccine was introduced under expanded access, the first time that an Ebola vaccine has been used in an outbreak setting outside a clinical trial. Here we describe the safety of rVSV-ZEBOV candidate vaccine and operational feasibility of ring vaccination as a reactive strategy in a resource-limited rural setting. METHODS: Approval for expanded access and compassionate use was rapidly sought and obtained from relevant authorities. Vaccination teams and frozen vaccine were flown to the outbreak settings. Rings of contacts and contacts of contacts were defined and eligible individuals, who had given informed consent, were vaccinated and followed up for 21 days under good clinical practice conditions. FINDINGS: Between March 17 and April 21, 2016, 1510 individuals were vaccinated in four rings in Guinea, including 303 individuals aged between 6 years and 17 years and 307 front-line workers. It took 10 days to vaccinate the first participant following the confirmation of the first case of Ebola virus disease. No secondary cases of Ebola virus disease occurred among the vaccinees. Adverse events following vaccination were reported in 47 (17%) 6-17 year olds (all mild) and 412 (36%) adults (individuals older than 18 years; 98% were mild). Children reported fewer arthralgia events than adults (one [<1%] of 303 children vs 81 [7%] of 1207 adults). No severe vaccine-related adverse events were reported. INTERPRETATION: The results show that a ring vaccination strategy can be rapidly and safely implemented at scale in response to Ebola virus disease outbreaks in rural settings. FUNDING:WHO, Gavi, and the World Food Programme
The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions
BACKGROUND: In July 2014, an outbreak of Ebola virus disease (EVD) started in Pujehun district, Sierra Leone. On January 10th, 2015, the district was the first to be declared Ebola-free by local authorities after 49 cases and a case fatality rate of 85.7 %. The Pujehun outbreak represents a precious opportunity for improving the body of work on the transmission characteristics and effects of control interventions during the 2014–2015 EVD epidemic in West Africa. METHODS: By integrating hospital registers and contact tracing form data with healthcare worker and local population interviews, we reconstructed the transmission chain and investigated the key time periods of EVD transmission. The impact of intervention measures has been assessed using a microsimulation transmission model calibrated with the collected data. RESULTS: The mean incubation period was 9.7 days (range, 6–15). Hospitalization rate was 89 %. The mean time from the onset of symptoms to hospitalization was 4.5 days (range, 1–9). The mean serial interval was 13.7 days (range, 2–18). The distribution of the number of secondary cases (R(0) = 1.63) was well fitted by a negative binomial distribution with dispersion parameter k = 0.45 (95 % CI, 0.19–1.32). Overall, 74.3 % of transmission events occurred between members of the same family or extended family, 17.9 % in the community, mainly between friends, and 7.7 % in hospital. The mean number of contacts investigated per EVD case raised from 11.5 in July to 25 in September 2014. In total, 43.0 % of cases were detected through contact investigation. Model simulations suggest that the most important factors determining the probability of disease elimination are the number of EVD beds, the mean time from symptom onset to isolation, and the mean number of contacts traced per case. By assuming levels and timing of interventions performed in Pujehun, the estimated probability of eliminating an otherwise large EVD outbreak is close to 100 %. CONCLUSIONS: Containment of EVD in Pujehun district is ascribable to both the natural history of the disease (mainly transmitted through physical contacts, long generation time, overdispersed distribution of secondary cases per single primary case) and intervention measures (isolation of cases and contact tracing), which in turn strongly depend on preparedness, population awareness, and compliance. Our findings are also essential to determine a successful ring vaccination strategy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-015-0524-z) contains supplementary material, which is available to authorized users
Assessment of measles immunity among infants in Maputo City, Mozambique
<p>Abstract</p> <p>Background</p> <p>The optimum age for measles vaccination varies from country to country and thus a standardized vaccination schedule is controversial. While the increase in measles vaccination coverage has produced significant changes in the epidemiology of infection, vaccination schedules have not been adjusted. Instead, measures to cut wild-type virus transmission through mass vaccination campaigns have been instituted. This study estimates the presence of measles antibodies among six- and nine-month-old children and assesses the current vaccination seroconversion by using a non invasive method in Maputo City, Mozambique.</p> <p>Methods</p> <p>Six- and nine-month old children and their mothers were screened in a cross-sectional study for measles-specific antibodies in oral fluid. All vaccinated children were invited for a follow-up visit 15 days after immunization to assess seroconversion. </p> <p>Results</p> <p>82.4% of the children lost maternal antibodies by six months. Most children were antibody-positive post-vaccination at nine months, although 30.5 % of nine month old children had antibodies in oral fluid before vaccination. We suggest that these pre-vaccination antibodies are due to contact with wild-type of measles virus. The observed seroconversion rate after vaccination was 84.2%. </p> <p>Conclusion</p> <p>These data indicate a need to re-evaluate the effectiveness of the measles immunization policy in the current epidemiological scenario.</p
Measles vaccination in Africa: by how much could routine coverage be improved?
Assuming that the level of Bacille Calmette Guerin (BCG) coverage gives a measure of access to immunisation services, it is possible to derive what fraction of infants are not immunised against measles due to under-utilisation of existing services (rather than unavailability of services). According to the most recent official statistics, the overall coverage for measles vaccine is 53% in Africa (10% lower than for BCG). This difference amounts to 3 million African children who will not be vaccinated against measles this year even though they probably have access to immunisation services
Applying lessons from the Ebola vaccine experience for SARS-CoV-2 and other epidemic pathogens
- …
