9 research outputs found

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    The Illusion of requirements in software development

    No full text
    This viewpoint explores the possibility that many software development projects may have no useful requirements. Specifically, for problems (e.g., knowledge worker burnout) with two completely different solutions (e.g., better tool support or hire more employees), an analyst may state a goal (e.g., decrease work hours) but more specific desiderata are contingent on the chosen solution. Furthermore, without fully exploring the design space, the designer cannot be sure whether there exists another approach, which would achieve the goal without any commonality with known approaches. In these situations of sparse requirements, analysts may misrepresent design decisions as requirements, creating an illusion of requirements in software development

    Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

    Get PDF
    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa

    Cystic fibrosis: a mucosal immunodeficiency syndrome

    No full text

    Understanding allergic multimorbidity within the non-eosinophilic interactome

    Get PDF
    Background: The mechanisms explaining multimorbidity between asthma, dermatitis and rhinitis (allergic multimorbidity) are not well known. We investigated these mechanisms and their specificity in distinct cell types by means of an interactome-based analysis of expression data. Methods: Genes associated to the diseases were identified using data mining approaches, and their multimorbidity mechanisms in distinct cell types were characterized by means of an in silico analysis of the topology of the human interactome. Results: We characterized specific pathomechanisms for multimorbidities between asthma, dermatitis and rhinitis for distinct emergent non-eosinophilic cell types. We observed differential roles for cytokine signaling, TLR-mediated signaling and metabolic pathways for multimorbidities across distinct cell types. Furthermore, we also identified individual genes potentially associated to multimorbidity mechanisms. Conclusions: Our results support the existence of differentiated multimorbidity mechanisms between asthma, dermatitis and rhinitis at cell type level, as well as mechanisms common to distinct cell types. These results will help understanding the biology underlying allergic multimorbidity, assisting in the design of new clinical studies.This work was supported by Mechanisms of the Development of ALLergy (MeDALL), a collaborative project done within the EU under the Health Cooperation Work Programme of the Seventh Framework programme (grant agreement number 261357). EM is supported by grants from the European Research Council (n° 757919) and the Swedish Research Council. NL is a recipient of a postdoctoral fellowship from the French National Research Agency in the framework of the "Investissements d’avenir" program (ANR-15-IDEX-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 6AM Data Mining provided support in the form of a salary for DA, but did not have any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section

    Pseudomonas aeruginosa Host Immune Evasion

    No full text

    Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities

    No full text
    corecore