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Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center,

Department of Dermatology and Allergy, Berlin, Germany

* daniel.aguilar@ciberehd.org

Abstract

Background

The mechanisms explaining multimorbidity between asthma, dermatitis and rhinitis (allergic

multimorbidity) are not well known. We investigated these mechanisms and their specificity

in distinct cell types by means of an interactome-based analysis of expression data.

Methods

Genes associated to the diseases were identified using data mining approaches, and their

multimorbidity mechanisms in distinct cell types were characterized by means of an in silico

analysis of the topology of the human interactome.

Results

We characterized specific pathomechanisms for multimorbidities between asthma, dermati-

tis and rhinitis for distinct emergent non-eosinophilic cell types. We observed differential

roles for cytokine signaling, TLR-mediated signaling and metabolic pathways for multimor-

bidities across distinct cell types. Furthermore, we also identified individual genes potentially

associated to multimorbidity mechanisms.

Conclusions

Our results support the existence of differentiated multimorbidity mechanisms between

asthma, dermatitis and rhinitis at cell type level, as well as mechanisms common to distinct
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cell types. These results will help understanding the biology underlying allergic multimorbid-

ity, assisting in the design of new clinical studies.

Introduction

Mapping diseases onto molecular interaction networks (such as the protein-protein interac-

tion network, also known as the interactome), has contributed to the elucidation of disease

mechanisms and the identification of new disease-associated genes [1, 2]. Evidence suggests

that disease-associated genes are not randomly distributed within the interactome, but instead

they work coordinately forming connected communities linked to disease phenotypes [1, 3–

5]. Furthermore, genes expressed in a particular tissue tend to form a well-localized subnet-

work, and the partition of the complete interactome into tissue-specific subnetworks has

important implications for the understanding of disease mechanisms [6]. Gene activity is often

dependent on tissue context, and human diseases arise from the complex interplay of tissue

and cell-lineage-specific processes [7, 8]. Disease-associated genes are usually tissue-specific

and their interaction patterns with other genes change in diseased tissues as compared to

healthy ones [9]. These observations make elucidating the context-specific role of genes in

pathophysiological processes particularly challenging [10, 11]. Exploiting tissue-specific infor-

mation has provided valuable clues on tissue-specific gene functions [12].

The computational analysis of tissue-specific cellular networks helps to understand the tis-

sue-specific mechanisms of diseases, and how those mechanisms interplay with one another.

Authors have long hypothesized that perturbations of cellular networks are key to many phe-

notypic and pathophenotypic outcomes [1, 4, 13–16]. Because of this, co-morbid and multi-

morbid phenotypes are expected to share tissue-specific causative mechanisms [12, 13]. Stud-

ies have found that multimorbidity between metabolic diseases can be explained by shared cel-

lular mechanisms [17], and that multimorbidities do not necessarily imply that the involved

diseases are linked through shared genes [16, 18–20].

In a previous work, we uncovered significant patterns of network connectivity between the

cellular networks associated to asthma (A), dermatitis (D) and rhinitis (R) [21], which sup-

ported the idea that A, D and R form a multimorbidity cluster due to shared genes [22, 23] and

pathomechanisms [24–26]. While eosinophils have been singled out as prominent mediators

in a number of inflammatory diseases [27–30] and multimorbidities [31–34], many other cell

types (e.g. macrophages, monocytes/dendritic cells, lymphocytes), are involved in complex

and heterogeneous diseases such as A, D and R [35–37]. Yet, a cell-type-based interactome

analysis of the allergic multimorbidity has not been reported to the best of our knowledge. In

this study, we use the interactome and expression data to investigate the mechanisms of multi-

morbidity between A, D and R at a cell-type-specific level, focusing on emergent non-eosino-

philic allergy-mediating cell types across distinct tissues. Our results provide new insights

could provide valuable information to improve prevention and treatment of these diseases.

Methods

Methods are described in detail in S1 Text.

Data sources

Gene-disease associations. We built the sets of genes associated to A, D and R by inte-

grating data from four sources: (1) The Comparative Toxicogenomics Database [38], which

Non-eosinophilic multimorbidity
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provides highly reliable gene-disease associations characterized through various experimental

procedures combined with a process of expert curation of the literature and other databases

(e.g. OMIM [39]). (2) The DisGeNet catalog, that contains curated gene-disease associations

extracted from literature [40]. (3) UniProt-derived gene-disease associations, extracted from

the Involvement in disease section of the Uniprot Knowledgebase [41]. (4) The Phenotype-

Genotype Integrator database, that integrates information various NCBI genomic databases

with association data from the National Human Genome Research Institute GWAS Catalog

[42]. This is the only data source containing solely GWAS-derived gene associations [43].

Genes associated to a disease d (any of A, D or R) will be hereinafter referred to as d-associated

genes.

The interactome. We built the functional interaction network (hereinafter called the

interactome for brevity) by combining data from: (1) The Reactome Functional Interaction

Network (v. 022717) [44], which includes not only protein-protein interactions but also gene

expression interaction, metabolic interactions and signal transduction. (2) The STRING inter-

action network (v.10.5) [45].

Cell-type-specific gene expression. Gene expression levels were obtained from the

human gene expression atlas available at ArrayExpress under accession number E-MTAB-62

[46]. This is a cell-type-wide compendium of high-quality microarray-derived expression data

that has been previously used in other network-based analysis of gene expression [47–49] and

has been incorporated into a number of biomedical software packages [50–52]. We filtered the

data to remove redundancies and samples subjected to particular treatments or environmental

factors (see S1 Text). We then centered and standardized the expression level of each gene as:

eg;c ¼
ðEg;c � MgÞ

MADg

where Eg,c is the expression level of the gene g in cell type c, Mg is the median expression level

the gene g across all cell types, and MADg is the median absolute deviation of the expression

levels of gene g across all cell types. This made the expression levels comparable between genes

[53, 54].

We defined a gene to be cell-type-specific if its absolute normalized expression level eg,c was

at least 1.5 larger than the interquartile range (IQR) of its normalized expression across all cell

types [6, 12, 55, 56]. Genes specific to a cell type c (any of our cell types of interest) will be here-

inafter referred to as c-specific genes.

Cellular pathways

Cellular pathways were downloaded from Reactome database in the UniProt2Reactome format

files [44]. Pathway-associated genes either without expression data or not present in the inter-

actome were not considered. Disease-related cellular pathways (e.g. Constitutive Signaling by
Aberrant PI3K in Cancer) were not considered. Reactome is a collection of pathways built in a

hierarchical manner, where larger pathways are subdivided into smaller pathways with more

specific functionalities. This implies a trade-off between the specificity in the representation of

cellular functions and the average number of genes per pathway [57]. To minimize the overlap

between pathways in order to avoid redundancies that could negatively affect our analysis

[58], we calculated the pairwise overlap between pathways at distinct levels of the Reactome

hierarchy using the Sorensen-Dice method [59–61]. If two pathways had an overlap of> 50%

genes, the one with the lowest number of associated genes was removed from the set. We

chose pathways of at depth 3 of the hierarchy because it provided a mean overlap < 1% while

annotating 4,809 genes (this is 87,9% of the total genes annotated in the database, all levels

Non-eosinophilic multimorbidity
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considered). Genes associated to a pathway p (any of our pathways of interest) will be hereinaf-

ter referred to as p-associated genes.

Pathway annotation in our previous study of A, D and R were extracted from BioCarta

[62]. There is not a perfect equivalence between cellular pathways from BioCarta and Reac-

tome databases, so in order to compare our results to those from our previous whole-organism

multimorbidity study [21] we performed an association test to identify which BioCarta path-

ways significantly overlapped with Reactome pathways (Fisher’s Exact test, adjusted P<0.05;

S1 Table). P-values in this study were adjusted by the Benjamini-Hochberg method for false

discovery (FDR) control [63].

Cell-type-specific networks

In order to generate the specific network for any cell type c, we selected all edges from the

interactome connecting c-specific genes [6, 64]. Because of the interactome-based nature of

our analysis, those genes not present in the interactome or not present in the expression data-

set were removed from the analysis. The statistical significance of the number of d-associated

genes present in each c-specific network was calculated by means of a Fisher’s Exact test

(adjusted P<0.05).

Quantifying cell-type-specific multimorbidity

In order to obtain a quantitative measure of the extent to which A, D and R multimorbidity is

manifested in distinct cell types, we designed an interactome-based approach (workflow in Fig

1; illustrated with an example in S1 Fig). Briefly, we scored all genes specific to a given cell type

according to their connectivity (or their "closeness") to known disease-associated genes, under

the rationale that the malfunction of one (or more) of the disease-associated genes is likely to

perturb the function of the neighboring genes, eventually disrupting a cellular mechanism and

giving rise to a diseased phenotype [5, 65–68]. In other words, we scored each gene in each cell

type according to its contribution to the manifestation of A, D and R. Then, we selected the set

of top-scoring genes (called S; Sc
d being the top-scoring genes for disease d in cell type c).

Finally, for each cell type we calculated the overlap between the sets of top-scoring genes for

AD, AR, DR and ADR. This overlap was called the Multimorbidity Score (MS; MST
d1,d2 being

the Multimorbidity Score for diseases d1 and d2 in cell type c). The process is described in

detail in S1 Text.

Characterizing cell-type-specific multimorbidity mechanisms

After having quantitatively scored the multimorbidity between diseases in different cell types,

we wished to identify the actual cellular mechanisms involved in the manifestation of the mul-

timorbidities. To do so, we designed a method to measure the perturbation that a disease can

exert over a cellular pathway in a given cell type. The starting point is the set of top-scoring

genes Sc
d calculated in the previous section. We identified the set of cellular pathways present

in cell type c, and then scored how perturbed they were by the manifestation of disease d using

Sc
d (workflow in Fig 2; illustrated with an example in S2 Fig). This score was called the Pertur-

bation Score (PS; PSc
p,d being the perturbation experimented by pathway p during the manifes-

tation of disease d on cell type c). Under the assumption that any disease can be viewed as the

product of perturbed cellular mechanisms (i.e. cellular pathways), and that multimorbidity is

known to arise as those perturbed mechanisms are shared by distinct diseases [12, 13, 69, 70],

we selected as candidate mechanisms for multimorbidity those pathways that were signifi-

cantly perturbed in more than one disease in the same cell type. The process is described in

detail in S1 Text.

Non-eosinophilic multimorbidity
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Identifying cell-type-specific candidates to multimorbidity

Lastly, we wished to identify individual genes that might constitute candidates to multimorbid-

ity. In the Quantifying cell-type-specific multimorbidity section we had identified the sets of

genes more susceptible to be perturbed by a disease in a cell type (Sc
d). We identified as multi-

morbidity candidates those genes simultaneously belonging to> = 2 of those sets (i.e. suscepti-

ble to be perturbed by two diseases in the same cell type) for AD, AR, DR multimorbidities,

and> = 3 in the case of ADR multimorbidity. In addition, we numerically scored the contri-

bution of each gene g to multimorbidity (MSg,c
d1,d2 being the Multimorbidity Score for gene c

with respect to diseases d1 and d2 in cell type c). This process is detailed in Text S1.

Results

Gene-disease associations

The number of genes associated to A, D and R with representation in the interactome and

expression data was 98, 62 and 10, respectively. The complete list of genes is shown in Table 1

Fig 1. Workflow for Quantifying cell-type-specific multimorbidity section. Only multimorbidity between two diseases is shown. Numbered circles

indicate the steps of in the section Quantifying cell-type-specific multimorbidity in Methods.

https://doi.org/10.1371/journal.pone.0224448.g001

Non-eosinophilic multimorbidity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224448 November 6, 2019 5 / 31

https://doi.org/10.1371/journal.pone.0224448.g001
https://doi.org/10.1371/journal.pone.0224448


(see S2 Table and Gene-disease associations in the Methods section for data sources). Three

genes were associated with A, D and R: IL13, platelet-activating factor acetylhydrolase PLA2G7
and LRRC32, a signal peptide cleavage essential for surface expression of a regulatory T cell

surface protein. The complete list of all disease-associated genes in each cell type is provided in

S2 Table.

Cell-type-specific gene expression and the cell-type-specific networks

The complete interactome contained 15,332 genes (nodes) and 394,317 interactions (edges).

The total number of cell types was 60, classified into 15 distinct tissues. The total number of

genes with expression data was 8,461 (of which 7,486 were present in the interactome). Table 2

shows the number of genes specific to each cell-type-specific network and its statistical signifi-

cance (an extended version of the table with p-values is provided as S3 Table). The number of

genes present in a cell-type-specific network is lower than the number of cell-type-specific

genes because we only considered directly connected cell-type-specific gene pairs. In other

words, for a cell type c, any c-specific gene not connected to other c-specific gene was not a

part of the c-specific network. The cell type with the most specific genes was hematopoietic
stem cell with 1,156 specific genes. The cell type with the least specific genes was blood-derived

monocyte with 132 genes. The complete list of tissues, cell types and cell-type-specific genes is

available at S2 Table.

Cellular pathways

The number of pathways in Reactome database was 519 after filtering, with an average pair-

wise overlap of 0.01%. Overall, 6,989 genes were associated to at least one pathway. On average,

Fig 2. Workflow for Characterizing cell-type-specific multimorbidity mechanisms section. Only multimorbidity between two diseases is shown.

Numbered circles indicate the steps of in the section Characterizing cell-type-specific multimorbidity mechanisms in Methods.

https://doi.org/10.1371/journal.pone.0224448.g002

Non-eosinophilic multimorbidity
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Table 1. Gene-disease associations.

gene name A D R gene description gene name A D R gene description

IL13 ● ● ● interleukin 13 MMP9 ● matrix metallopeptidase 9

LRRC32 � � � leucine rich repeat containing 32 MS4A2 ● membrane spanning 4-domains A2

PLA2G7 ● ● ● phospholipase A2 group VII MYB ● MYB proto-oncogene, transcription factor

CASP8 ● ● caspase 8 NDFIP1 � Nedd4 family interacting protein 1

CCL11 ● ● C-C motif chemokine ligand 11 NFKB2 ● nuclear factor kappa B subunit 2

CD14 ● ● CD14 molecule NOS2 ● nitric oxide synthase 2

CHI3L1 ● ● chitinase 3 like 1 NPY ● neuropeptide Y

CRNN � � cornulin PARP1 ● poly(ADP-ribose) polymerase 1

EFHC1 � � EF-hand domain containing 1 PEX14 � peroxisomal biogenesis factor 14

ETS1 � � ETS proto-oncogene 1, transcription factor PHF11 ● PHD finger protein 11

IL18R1 � � interleukin 18 receptor 1 PLAU ● plasminogen activator, urokinase

IL1B ● ● interleukin 1 beta PPP2CA ● protein phosphatase 2 catalytic subunit alpha

IL33 ● ● interleukin 33 PTEN ● phosphatase and tensin homolog

IL4 ● ● interleukin 4 PTGES � prostaglandin E synthase

IL5 ● ● interleukin 5 PTGS2 ● prostaglandin-endoperoxide synthase 2

IL6R � � interleukin 6 receptor RNASE3 ● ribonuclease A family member 3

IRAK3 ● ● interleukin 1 receptor associated kinase 3 RORA � RAR related orphan receptor A

KIF3A ● � kinesin family member 3A SCGB1A1 ● secretoglobin family 1A member 1

RAD50 ● � RAD50 double strand break repair protein SOD1 ● superoxide dismutase 1

SPINK5 ● ● serine peptidase inhibitor, Kazal type 5 TBX21 ● T-box 21

STAT6 � ● signal transducer and activator of transcription 6 TBXA2R ● thromboxane A2 receptor

TNIP1 ● � TNFAIP3 interacting protein 1 TGFB1 ● transforming growth factor beta 1

IL1RL1 ● � interleukin 1 receptor like 1 TIMP3 ● TIMP metallopeptidase inhibitor 3

RANBP6 � � RAN binding protein 6 TNC ● tenascin C

SLC25A46 � � solute carrier family 25 member 46 TNFSF4 � TNF superfamily member 4

SMAD3 � � SMAD family member 3 TRPA1 ● transient receptor potential cation channel subfamily

A member 1

TLR1 � � toll like receptor 1 TYRP1 � tyrosinase related protein 1

ADCYAP1R1 ● ADCYAP receptor type I VEGFA ● vascular endothelial growth factor A

ADORA1 � adenosine A1 receptor CCL17 ● C-C motif chemokine ligand 17

ALDH2 ● aldehyde dehydrogenase 2 family (mitochondrial) CCL22 ● C-C motif chemokine ligand 22

ALOX5 ● arachidonate 5-lipoxygenase CCL24 ● C-C motif chemokine ligand 24

AREG ● amphiregulin CCR5 ● C-C motif chemokine receptor 5 (gene/pseudogene)

ARG1 ● arginase 1 CD207 � CD207 molecule

ARG2 ● arginase 2 CSTA ● cystatin A

BACH2 � BTB domain and CNC homolog 2 CTLA4 ● cytotoxic T-lymphocyte associated protein 4

BCL2 ● BCL2, apoptosis regulator CXCL10 ● C-X-C motif chemokine ligand 10

CAT ● catalase CYP24A1 � cytochrome P450 family 24 subfamily A member 1

CCL2 ● C-C motif chemokine ligand 2 EMSY ● EMSY, BRCA2 interacting transcriptional repressor

CDH17 � cadherin 17 FOXP3 ● forkhead box P3

CDK2 � cyclin dependent kinase 2 GLB1 ● galactosidase beta 1

CFTR ● cystic fibrosis transmembrane conductance

regulator

IFNG ● interferon gamma

CHIT1 � chitinase 1 IL10 ● interleukin 10

CPN1 ● carboxypeptidase N subunit 1 IL15RA � interleukin 15 receptor subunit alpha

CRB1 � crumbs 1, cell polarity complex component IL18RAP � interleukin 18 receptor accessory protein

CRBN � cereblon IL2RA ● interleukin 2 receptor subunit alpha

CXCL14 ● C-X-C motif chemokine ligand 14 IL6 ● interleukin 6

(Continued)
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~37% of genes on cell-type-specific networks were associated to at least one pathway. The frac-

tion of pathway-associated genes present in each cell type is shown in S4 Table. The list of

genes associated to each pathway in each cell-type-specific network is provided in S5 Table.

The connectivity Cc
p of the pathways is shown in S6 Table. As an example, Fig 3 shows cellular

pathway (Regulation of TLR by endogenous ligand) mapped onto a cell-type specific network

(CD19+ B cell).

Quantification of cell-type-specific multimorbidity

The Multimorbidity Score (MS) quantitatively measured the multimorbidity between A, D

and R specific to different cell types (Table 3). S2 Table contains the number of top-scoring

genes for each disease on each cell-type-specific network (|Sc
d|, see Methods). Of the 60 cell-

type-specific networks, 12 were associated to a single disease and were not considered for fur-

ther multimorbidity analysis. Inspection of Table 3 shows 14 cell types associated to ADR mul-

timorbidity because their MS value is > 0 for all combinations of the three diseases (the

strength of the association given by the MS value, ranging from 0 to 1). The cell types include

monocytes-macrophages, T cells and plasma cells, as well as skin endothelial cells and esoph-

ageal epithelial cells. These 14 cell types will be subject to scrutiny in the following sections.

Table 1. (Continued)

gene name A D R gene description gene name A D R gene description

CYSLTR2 ● cysteinyl leukotriene receptor 2 IL7R � interleukin 7 receptor

DNMT1 ● DNA methyltransferase 1 KRT1 ● keratin 1

EDN1 ● endothelin 1 PAH ● phenylalanine hydroxylase

ELF3 � E74 like ETS transcription factor 3 PFDN4 � prefoldin subunit 4

GPR37L1 � G protein-coupled receptor 37 like 1 PPP2R3C � protein phosphatase 2 regulatory subunit B’’gamma

GRM4 � glutamate metabotropic receptor 4 PTPRN2 � protein tyrosine phosphatase, receptor type N2

GSDMB ● gasdermin B REL � REL proto-oncogene, NF-kB subunit

GSTM1 ● glutathione S-transferase mu 1 RTEL1-TNFRSF6B � RTEL1-TNFRSF6B readthrough (NMD candidate)

GSTP1 ● glutathione S-transferase pi 1 S100A8 ● S100 calcium binding protein A8

HERC2 � HECT and RLD domain containing E3 ubiquitin

protein ligase 2

SELE ● selectin E

HMOX1 ● heme oxygenase 1 SLC11A1 ● solute carrier family 11 member 1

HNMT ● histamine N-methyltransferase SPRR1B � small proline rich protein 1B

HTATIP2 � HIV-1 Tat interactive protein 2 SPRR3 � small proline rich protein 3

ICAM1 ● intercellular adhesion molecule 1 STAT1 ● signal transducer and activator of transcription 1

IKZF3 ● IKAROS family zinc finger 3 TGM5 ● transglutaminase 5

IL12B ● interleukin 12B TNFRSF1B ● TNF receptor superfamily member 1B

IL1RL2 � interleukin 1 receptor like 2 TNXB � tenascin XB

IL1RN ● interleukin 1 receptor antagonist VAX2 � ventral anterior homeobox 2

IL2RB � interleukin 2 receptor subunit beta VNN1 ● vanin 1

KRT19 ● keratin 19 VNN2 ● vanin 2

LPP � LIM domain containing preferred translocation

partner in lipoma

WAS ● Wiskott-Aldrich syndrome

MLLT3 � MLLT3, super elongation complex subunit WIPF1 ● WAS/WASL interacting protein family member 1

MMP10 ● matrix metallopeptidase 10 BDH1 � 3-hydroxybutyrate dehydrogenase 1

MMP13 � matrix metallopeptidase 13 FOXJ1 ● forkhead box J1

A: asthma; D: dermatitis; R: rhinitis. Filled circle: all evidences. Empty circle: GWAS-only evidence. Only genes with expression data, present in the interactome and

associated to A, D or R are shown.

https://doi.org/10.1371/journal.pone.0224448.t001
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Table 2. Number of disease-associated genes on cell-type-specific networks.

Cell-type-specific genes Cell-type-specific network genes

n n A D R

tissue cell type n % n % n %

Adipose tissue from abdomen Adipose-derived adult stem cells (ADASCs) 584 319 9 2.8 7 2.2 1 0.3

Adipose tissue from abdomen and thigh Adipose-derived adult stem cells (ADASCs) 645 343 8 2.3 5 1.5

Aorta Primary aortic smooth muscle cell 1023 623 7 1.1 3 0.5

Blood 721 B lymphoblasts 534 329 8 2.4 2 0.6

BDCA4+ dentritic cell 719 386 12 3.1 4 1

CD14+ monocyte 786 426 13 3.1 8 1.9 1 0.2

CD19+ B cell (neg. sel.) 1027 619 11 1.8 16 2.6 1 0.2

CD34+ cell 433 295 7 2.4 2 0.7

CD34+ hematopoietic stem cell 941 639 6 0.9 3 0.5

CD34+ T cell 219 91 4 4.4 4 4.4

CD4+ T cell 622 315 10 3.2 6 1.9 1 0.3

CD8+ T cell 344 131 4 3.1 1 0.8

Central memory 1 CD4+ T cell 228 72 1 1.4 3 4.2

Central memory CD4+ T cell 220 79 3 3.8 6 7.6

Effector memory CD4+ T cell 154 47 4 8.5 7 14.9

Erythrocyte 247 140 8 5.7 9 6.4 1 0.7

Granulocyte 342 203 3 1.5 2 1

Hematopoietic stem cell 1148 723 11 1.5 3 0.4

Lymphocyte 348 255 11 4.3 14 5.5 1 0.4

Macrophage 382 225 11 4.9 14 6.2 2 0.9

Monocyte 147 91 8 8.8 8 8.8 1 1.1

Monocyte derived macrophage 430 266 10 3.8 14 5.3 2 0.8

Naive CD4+ T cell 248 89 3 3.4 1 1.1

Primary bone marrow CD34+ stem cell 398 199 5 2.5 3 1.5 1 0.5

Progenitor cell, hematopoietic stem cell 440 207 6 2.9 2 1

T cell 532 284 16 5.6 13 4.6 1 0.4

T lymphocyte 193 88 5 5.7 5 5.7

Bone marrow CD138+ plasma cell 936 526 15 2.9 9 1.7 3 0.6

Immature-B cell 212 87 1 1.1

Mesenchymal stem cell 307 175 4 2.3 1 0.6

Mesenchymal stem cell BM-MSC 474 263 4 1.5

Pre-B-I cell 444 229 4 1.7

Pre-B-II large cell 830 485 3 0.6

Pre-B-II small cell 466 242 3 1.2 1 0.4

Primary bone marrow CD34- mesenchymal stem cell 209 80 3 3.8

Primary bone marrow CD34+ stem cell 252 116 10 8.6 3 2.6

Connective tissue Fibroblast 305 131 4 3.1 3 2.3

Esophagus Esophageal epithelium 702 399 11 2.8 10 2.5 1 0.3

Eye Trabecular meshwork 540 319 4 1.3

Trabecular meshwork cell 561 297 6 2 1 0.3

Kidney Epithelium 596 346 6 1.7 3 0.9

Mesagnium Mesangial cell 396 169 3 1.8

Ovary Theca 746 393 3 0.8

(Continued)
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S7 Table provides a combined overview of the results of Tables 2 and 3, containing the cell

types with a significant number of A-, D- or R-associated genes as well as those cell types with

nonzero MS.

Cell-type-specific multimorbidity mechanisms

Table 4 shows the pathways identified as candidate mechanisms for multimorbidity in the 14

cell types where MS for ADR is>0 (Table 3), where pathways in the Cytokine signaling in
immune system category roughly correspond to the pathways activated in the type-2 asthmatic

response (particularly, IL4 and IL13 signaling [71, 72]). S8 Table shows candidate mechanisms

in all other cell types (which are restricted to AD multimorbidity except for one pathway in

primary bone marrow CD34+ stem cells, associated to AR multimorbidity). It is noteworthy

that some cell types do not present any significant mechanism for multimorbidity despite

being associated to multimorbidity in Table 3 (namely, epidermis/dermis, and primary

microvascular endothelial cells, not associated to any pathway). Other cell types are strongly

associated to ADR multimorbidity while not being associated to any mechanism for ADR mul-

timorbidity. This is the case of CD14+ monocytes, for which only a mechanism mediation AD

multimorbidity (NOD1/2 signaling pathway) was found. The reason for these observations is

that, on average, only ~37% of genes in a given cell type are annotated to a least one pathway

(S4 Table). Thus, a large number of non-annotated genes might be still contributing to multi-

morbidity. The cellular pathways perturbed in each individual disease and cell type (i.e PSc
pd

significant at P< 0.05, see Methods) are provided in S9 Table.

Table 2. (Continued)

Cell-type-specific genes Cell-type-specific network genes

n n A D R

tissue cell type n % n % n %

Palatine tonsil CXCR5(-)ICOS(-/lo) CD4+ T cell 196 83 2 2.4

CXCR5(hi)ICOS(hi) CD4+ T cell 212 66 4 6.1 4 6.1

CXCR5(lo)ICOS(int) CD4+ T cell 174 55 2 3.6 3 5.5

Skin Epidermis and dermis 650 385 12 3.1 10 2.6 1 0.3

Primary blood vessel endothelial cell 314 138 6 4.3 1 0.7 1 0.7

Primary lymphatic endothelial cell 348 152 4 2.6 1 0.7

Primary microvascular endothelial cell 446 213 6 2.8 1 0.5 1 0.5

Skin (leg) Epidermis and dermis 658 378 12 3.2 10 2.6

Thymus CD34+CD1a- thymocyte 334 139 1 0.7 1 0.7

CD34+CD38- thymocyte 801 479 3 0.6 1 0.2

DP CD3- thymocyte 319 170 1 0.6

DP CD3+ thymocyte 402 140 1 0.7 2 1.4

ISP CD4+ thymocyte 340 200 1 0.5

SP CD4+ thymocyte 346 121 1 0.8 1 0.8

SP CD8+ thymocyte 270 90 1 1.1

Thyrocyte 406 218 7 3.2 4 1.8

Uterine tube Primary uterine smooth muscle cell 460 227 6 2.6 3 1.3

A: asthma. D: dermatitis. R: rhinitis. Light blue background: the number of genes is significantly higher than random expectation (adjusted P < 0.05). Dark blue

background: the number of genes is significantly higher than random expectation (adjusted P < 0.01). For clarity, zero values are represented as blank cells, and cell

types without any disease-associated genes are not shown.

https://doi.org/10.1371/journal.pone.0224448.t002
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Candidate multimorbidity genes

Table 5 shows the 30 top-scoring candidate genes for multimorbidity (and S10 Table contains

the full collection of candidate genes). The score assigned to multimorbidity (columns AD,

Fig 3. Pathway Toll Like Receptor 4 TLR4 Cascade on the CD19+ B cell specific network. (A) Complete view of the largest component of the

network. Pathway-associated genes and their interactions are shown in orange. (B) Zoom to the pathway-associated genes and their closest neighbors

only. Pathway-associated genes and their connections are shown in orange. (C) Top-scoring asthma genes (see Methods) are shown with blue borders.

(D) Top-scoring dermatitis genes are shown with blue borders. (E) Top-scoring rhinitis genes are shown with blue borders. The fraction of pathway

genes within the top-scoring gene sets is only significant for dermatitis and rhinitis. (F-H) Distribution of random Perturbation Score (PS) for A, D and

R, respectively. An arrow represents the real PS. Pathways whose PS is significantly larger than random expectation (P< 0.05, panels G and H) are

denoted as perturbed in the respective disease.

https://doi.org/10.1371/journal.pone.0224448.g003
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Table 3. Cell-type-specific multimorbidities between asthma, dermatitis and rhinitis.

tissue cell type / line AD AR DR ADR

Adipose tissue from abdomen and thigh Adipose-derived adult stem cells (ADASCs) 0.35

Adipose tissue from abdomen Adipose-derived adult stem cells (ADASCs) 0.35 0.25 0.36 0.24

Aorta Primary aortic smooth muscle cell 0.29

Blood 721 B lymphoblasts 0.08

BDCA4+ dentritic cell 0.18

CD14+ monocyte 0.77 0.71 0.83 0.70

CD19+ B cell (neg. sel.) 0.17 0.33 0.21 0.09

CD34+ T cell 0.12

CD34+ cell 0.65

CD34+ hematopoietic stem cell 0.20

CD4+ T cell 0.58 0.50 0.58 0.31

CD8+ T cell 0.11

Central memory 1 CD4+ T cell 0.57

Central memory CD4+ T cell 0.33

Effector memory CD4+ T cell 0.36

Erythrocyte 0.38 0.38 0.22 0.24

Granulocyte 0.33

Hematopoietic stem cell 0.19

Lymphocyte 0.42 0.33 0.37 0.24

Macrophage 0.17 0.29 0.24 0.11

Monocyte 0.38 0.50 0.33 0.30

Monocyte derived macrophage 0.15 0.24 0.21 0.10

Naive CD4+ T cell 0.50

Primary bone marrow CD34+ stem cell 0.45

Progenitor cell, hematopoietic stem cell 0.22

T cell 0.48 0.15 0.16 0.11

T lymphocyte 0.40

Bone marrow CD138+ plasma cell 0.38 0.47 0.71 0.33

Pre-B-II small cell 0.07

Primary bone marrow CD34+ stem cell 0.29

Connective tissue Fibroblast 0.14

Esophagus Esophageal epithelium 0.27 0.43 0.33 0.29

Kidney Epithelium 0.11

Palatine tonsil CXCR5(hi)ICOS(hi) CD4+ T cell 0.50

CXCR5(lo)ICOS(int) CD4+ T cell 0.40

Skin (leg) Epidermis and dermis 0.26

Skin Epidermis and dermis 0.35 0.14 0.16 0.13

Primary blood vessel endothelial cell 0.38 0.11 0.20

Primary lymphatic endothelial cell 0.12

Primary microvascular endothelial cell 0.50 0.50 1.00 0.60

Thyroid Thyrocyte 0.54

Uterine tube Primary uterine smooth muscle cell 0.11

The gradient of red correspond to the values of the Multimorbidity Score (MS, indicated within the cells; 0�MS� 1). Empty cells have a MS = 0.

https://doi.org/10.1371/journal.pone.0224448.t003
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AR, DR, ADR in Table 5 and S10 Table) can be read as the importance of the gene as mediator

for multimorbidity. As expected, many of the top-scoring candidates are associated to immune

system pathways. It is noteworthy that some genes may be associated to pathways which are,

in fact, not characterized as multimorbidity mechanisms. For instance, Table 5 shows IL13
gene as a strong ADR multimorbidity candidate in esophageal epithelium. This gene is anno-

tated as belonging to the Interleukin-10 signaling an Interleukin-4 and 13 signaling pathways.

However, neither pathway was characterized as a mechanism of multimorbidity for esophageal

epithelium in Table 4, because their perturbation score PST
pd did not reach statistical signifi-

cance. Genes in Table 5 show a higher score, on average, for AR than for AD multimorbidity

(P = 0.01482; paired Wilcoxon-Mann-Whitney test), implying a more closely-knit biological

mechanism for AR than for AD multimorbidity. The same was observed for AD vs DR

(P = 1.02�10−3; paired Wilcoxon-Mann-Whitney test) but not for AR vs DR. This observation

was also true when comparing scores of the whole set of predicted genes in S10 Table. Com-

parisons are shown in S11 Table. Genes which are not known be associated to any of the dis-

eases under study (i.e. they are not present in Table 1) but were characterized as candidates for

multimorbidity are particularly interesting candidates for experimental characterization.

There are 100 genes of this kind, and 21 of them are candidates for ADR multimorbidity.

Table 6 shows the 30 top-scoring ones.

Discussion

In this study, we have performed an interactome-based analysis of expression data to charac-

terize specific mechanisms for multimorbidity between asthma (A), dermatitis (D) and rhinitis

(R) in distinct 14 non-eosinophilic cell types and 15 tissues. We observed differential roles for

cytokine signaling, particularly associated with type 2 inflammation, TLR-mediated signaling

and metabolic pathways for multimorbidities across distinct cell types. Furthermore, we also

identified individual genes potentially associated to multimorbidity mechanisms.

Strengths

Interactome-based computational analysis provide a global view of the increasing complexity

of disease-gene association data, and the relationships among diseases, genes and functions

[73]. By employing an expression compendium that incorporates information on multiple het-

erogeneous gene expression experiments, we were able to identify cell-type-specific mecha-

nisms that underlie the multimorbidity between A, D and R, focusing on 14 cell types that are

emerging as major components in these complex diseases in 15 distinct tissues. Although

eosinophils are an important cell type in A [30, 74], we focused on other important yet no so

well-studied cell types in connection to ADR multimorbidity.

Our approach characterizes the mechanisms of multimorbidity not only by analyzing the

contributions of individual genes, but also their interrelationship and their connectivity to

other genes within the interactome. This is relevant because molecular causes of multimorbid-

ity are not restricted to shared genes, but involve a cascade of common perturbed cellular

mechanisms without which the whole mechanisms of multimorbidity cannot be properly

characterized. Although the statistical analysis of the overlap between sets of genes has been

widely employed to uncover disease-disease and disease-pathway associations, the limited

knowledge of disease-associated genes and lack of annotation data have hampered its results

[75, 76]. More recent approaches incorporating interactome-derived data provided a substan-

tial improvement to characterize multimorbidity [20, 65, 76, 77]. Our approach can detect

multimorbidity even if no shared genes are involved by identifying the cell-type-specific mech-

anisms associated to multimorbidity. In this respect, and because cellular pathways represent a
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curated set of gene functions which may be only partially present in some cell types, our

method allows not only to statistically quantify if a pathway can be considered as a specific

multimorbidity mechanism in a cell type, but also the discovery of particular genes involved in

the multimorbidity process. Finally, our method is fully scalable approach, making it possible

to study and characterize the etiology critical for multimorbidity between large groups of dis-

eases. The findings of this in silico study are hypothesis-generating and are intended to guide

new experiments on cell-type-specific allergic multimorbidity. Consequently, they should be

confirmed by proper mechanistic and genetic studies.

Weaknesses

As usual in differential expression studies, we are considering the gene expression level as a

proxy for the gene activity. However, these two characteristics do not always match. For

instance, a gene can be significantly over-expressed in a certain tissue or cell type and yet, at

the same time, its product can be rendered inactive through a post-translational modification

(e.g. phosphorylation). Our methodology does not capture those cases. Similarly, the time-

dependent gene expression patterns are not captured in our study, which only considers an

interactome static in time.

Lack of data availability also limited our analysis. Eosinophils are not a part of the expres-

sion compendium used in this study. However, to the best of our knowledge, no cell-type- or

tissue-wide expression compendium resolving eosinophils as an individual cell type exists.

This is why we chose to focus our attention in other cell types, important yet no so well-studied

in connection to ADR multimorbidity. Furthermore, our dataset reflects only expression levels

in healthy individuals because no cell-type-wide expression compendium in subjects with

ADR multimorbidity exists.

Another limitation of our study is data completeness. The intersection of expression and

interactome data sources yields a low coverage of the complete genome. Although this is a

common limitation (and authors have argued that the current coverage of the human interac-

tome does not limit its successful application to the investigation of disease mechanisms [5,

16]), some data loss is unavoidable: for instance, a protein such as filaggrin (FLG), commonly

associated to multimorbidity between A and D [78], was not present in our expression dataset

and could not be incorporated to the study. Also, our expression dataset contains data primar-

ily from adult subjects. Thus, it is unclear if our results can be generalized to other age groups

like young children or elderly people. However, we believe that gain in knowledge largely com-

pensates these limitations.

As for disease-gene associations, we are including gene-disease associations partially

derived from GWAS studies, whose reliability has been questioned [79–81]. Additionally, the

current human interactome is highly biased toward highly studied genes (a category that

includes many disease-associated genes), representing only a very small densely connected

fraction of the full interactome [82–86]. This bias might be larger than expected and may have

an impact on the biological conclusions extracted from the studies of the interactome [87].

However, non-biased interactomes have a much lower coverage, which makes them unsuitable

for some topology-based studies [87]. We tried to address this effect by building null models

which take into account the degree of the original genes. It should be also noted that there are

numerous factors, other than genetic ones, that determine multimorbidity, some of which are

environmental, lifestyle-related or treatment-induced. Finally, different mutations on the same

gene can have different pathological effects on its gene products [88]. We considered all dis-

ease-associated mutations to have an effect on gene activity that, in turn, has a molecular

impact on the interactome.

Non-eosinophilic multimorbidity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224448 November 6, 2019 19 / 31

https://doi.org/10.1371/journal.pone.0224448


Quantification of cell-type-specific multimorbidity

The MS measure treats multimorbidity symmetrically with respect to the diseases being com-

pared, meaning that it numerically reflects the mutual influence that the manifestation of one

disease exerts over the other disease in a cell type. It can be interpreted as a measure of the

degree to which a multimorbidity is present and specific to a certain cell type (regardless the

fact that systemic mechanisms may be playing a role in multimorbidity as well, a case which is

not captured by our method). Lower MS values imply that the specific mechanisms of the dis-

eases are largely detached from each other in the corresponding cell type: the perturbation

caused by the manifestation of one disease d1 will be less likely to travel throughout the net-

work and perturb the mechanisms that give rise to disease d2. At MS = 0 there is no multimor-

bidity between the diseases in the corresponding cell type (although multimorbidity may be

present as a more systemic process). At MS = 1, the mechanisms of both diseases are identical

in that cell type. We find an example of this in the primary microvascular endothelial cells,

where MS = 1 for the DR multimorbidity. The implication of this is that not only the gene sets

associated to D and R are identical in this cell type, but also that the gene sets influenced (or

perturbed) by the malfunction of those genes are also identical, thus rendering both diseases

the same disease in mechanistic terms for this cell type. Our methodology identifies cell-type-

specific interactomes that are not exclusive of a single cell type: some parts of the interactome

can be shared by more two or more (usually related) cell types.

MS revealed that all cell types with a significant number of disease-associated genes in at

least one disease also display some degree of multimorbidity. For instance, genes associated to

A and D are significantly associated to the monocyte cell-type-specific network (Table 2),

which also displays a MS> 0 across all multimorbidities (AD, AR, DR, ADR; Table 3). The

reverse, however, is not necessarily true: primary microvascular endothelial cells displayed

high MS values despite not showing any significant gene association. The reason lies in the use

of interactome data, which takes into account the interconnectivity amongst genes as well as

their number, allowing for the identification of multimorbidities that would go unnoticed in a

standard association analysis. In this line, it is also of note that a significant number of disease-

associated genes in a cell type does not necessarily imply a stronger MS. For instance, macro-

phages and monocyte-derived macrophages have a significant number of disease-associated

genes for A and D, and yet their MS value for AD multimorbidity are 0.17 and 0.15, respec-

tively. As another example, CD14+ T cells show large MS values for all multimorbidities

despite the fact that no statistical association was found neither with D- nor with R-associated

genes in this cell type.

Cell-type-specific multimorbidity mechanisms

Cytokine signaling, critical to the induction of the type 2 response, seems to be the main mech-

anism behind AD multimorbidity, and it is present in a number of distinct cell types, blood-

related or not (Table 4, S8 Table). IL4 and IL13 have long been known to be amongst the cyto-

kines secreted by Th2 cells in response to allergen-induced IgE synthesis in A, and the exis-

tence of an underlying IL4- and IL13-mediated pathomechanism for this multimorbidity has

been suggested by a number of observations, for instance the response to similar treatments

(e.g. dupilumab, a human monoclonal antibody that inhibits this type of signaling) [3]. IL10-

associated signaling, a regulator of other proinflammatory cytokines [89], was also found as a

contributing mechanism for AD multimorbidity across many cell types, as was IL1-associated

signaling. IL1 is a known inflammatory marker associated to D and bronchial A [90], amongst

other diseases with inflammatory components. Interestingly, a role for IL1 as a mediator in

multimorbidities has already been hinted, as IL1 blocking therapies have proven effective
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against conditions encountered as comorbidities in patients with rheumatic diseases [91, 92].

We have to point out, however, that the definition of a pathway (as a functionally annotated

gene set) should be taken into account when analyzing those results. For instance, the pathway

Antigen Processing and Cross-Presentation is associated to AR multimorbidity in erythrocytes

(Table 4). This contradicts evidence on MHC presence in human nonnucleated cells [93]

because of the definition of the pathway in Reactome database, that includes genes also anno-

tated in TLR-mediated pathways.

On the other hand, innate immune response mediated by toll-like receptors (TLRs) seems

to be the key mechanism for multimorbidities implicating R. The TLR family of genes is

important in barrier homeostasis and in the activation of the innate immune system [94], and

there are evidences of its involvement in R [95–97]. Although the link between A and R is well

established (the "United Airways" concept [98, 99]), there is limited knowledge about the

mechanistic interplay between A and R [100, 101]. AR multimorbidity seems also largely

restricted to a few blood-related cell types: CD19+ B cells, monocytes and erythrocytes.

Genetic studies have linked the TLR6-TLR1 locus to a role in the development of R [102], and

changes in TLR1 have been reported in asthmatic patients [17, 103], but no direct association

between A and R is known. Similarly, changes in TLR2 and TLR4 expression are known to dis-

turb the skin barrier in D [104]. According to our observations, TLR4-mediated cascade might

play an important role in R-associated multimorbidities in blood-related cell types.

Esophageal epithelium cells seem to be also associated to AR multimorbidity by means of

IL1 signaling pathway and genes such as IL-13 and IL-33. It is known that chronic eosinophilic

inflammation of the esophagus is associated with tissue remodeling and fibrosis that shares

many traits with A [105, 106]. Patients with eosinophilic esophagitis often present multimor-

bid conditions that include A and D [107]. It is also noteworthy the role of metabolism of pro-

teoglycans in CD19+ B cells for this multimorbidity. In this sense, our results indicate that

structurally similar proteoglycans neurocan (NCAN) and versican (VCAN) are related to this

mechanism. Although no evidence linking these two genes to A or R is known, VCAN encodes

an extracellular matrix protein that has been associated with A in murine models and with

bronchiolitis in humans [108, 109].

We observed that cells of the skin epidermis/dermis, and primary microvascular endothelial

cells were not significantly associated to any pathway. A number of reasons explain this obser-

vation: first, as already noted in the Results section, annotated pathways only cover approxi-

mately one-third of all genes in our cell-type-specific networks, leaving room for yet-

unannotated mechanisms to play a critical role in multimorbidity. Second, our approach iden-

tifies significantly perturbed pathways, implying that some pathways may be perturbed without

reaching the statistical significance cutoff of α = 0.05. Finally, our study only reflects cell-type-

specific mechanisms, not excluding the existence of systemic mechanisms that may have rele-

vant impact in a number of cell types. The fact that no pathway was characterized for these cell

types, however, does not preclude the existence of individual candidate genes which might be

playing a role in multimorbidity in them (see next section).

Cell-type-specific candidate genes

We identified a number of individual genes as potentially associated to multimorbidity (Tables

5 and 6; S10 Table). The identification of candidate genes complements the characterization of

mechanisms of multimorbidity based on pathway annotation. For instance, interleukin 1

receptor-like 1 (IL1RL1) is amongst the top-scoring candidates for ADR multimorbidity in

primary microvascular endothelial skin-derived cells, yet it is not associated to any pathway in

this cell type (and, thus, its contribution would have been lost had we focused solely on
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pathway-annotated multimorbidity mechanisms). A candidate gene in a particular cell type

may belong to a pathway not identified as a mechanism in that cell type. This is the case, for

example, of the IL13 gene, a high-scoring candidate gene in esophageal epithelium for ADR

multimorbidity. This gene belongs to two pathways: Interleukin-4 and 13 signaling and Inter-
leukin-10 signaling, and yet none of the two pathways is identified as a significant mechanism

for this cell type and multimorbidity (because when considering all the pathway-associated

genes, neither pathways is found to be significantly perturbed). Thus, we can conclude that

IL13 may play and important role as a multimorbidity mediator. Our results also provide valu-

able information of cell-type-specificity of candidate genes. For instance, IL4 and IL5, two of

the main inflammatory cytokines, in are associated to monocytes but not to macrophages (S10

Table), in agreement with previous observations [110].

The only non-cytokine-related gene in the top 10 positions of Table 5 is the PLA2G7 gene,

which controls inflammation though the inactivation of platelet-activating factor (PAF), a

potent phospholipid-derived mediator of inflammation that is secreted by many immune cells

and controls vascular permeability. Although no study associating PLA2G7 to ADR multimor-

bidity exists, it is a strong candidate if we take into account the wide range of actions of PAF
(considered a universal biological regulator [111]) that in turn associates PLA2G7 to a number

of inflammatory conditions other than A, D or R [112–114]. The "United Airways" concept,

introduced in the previous section, is also supported by our results: on average, mechanisms

mediating between A and R are more closely-knit (represented by higher average scores) than

mechanisms mediating A and D, although A and D share more disease-associated genes

(Table 1).

Some of the highest-scoring candidate genes were not even associated to any of the diseases

of interest (Table 6) illustrating the potential of our approach to characterize yet-undescribed

molecular mechanisms of multimorbidity. We predict interleukin receptors IL22RA1 and

IL20RA to play an important role in the ADR multimorbidity in the esophageal epithelium. To

date, IL22RA1 had been only associated to inflammatory responses in airway epithelia by

genetic studies, and IL20RA to psoriasis [115, 116]. Also, the functional nature of genes in

Table 6 is also much more diverse than that of Table 5. This is strongly suggestive of a research

bias towards already-known cytokine-related mediators when it comes to the study of these

allergic diseases, overlooking other functional groups. For instance, the second highest-scoring

gene in Table 6 is butyrylcholinesterase BCHE, a poorly-studied detoxifying enzyme that has

been proposed as a marker to identify and prognose systemic inflammation [117, 118] and

that has only marginally associated to allergic diseases. BCHE is highlighted by our method as

a mediator in ADR multimorbidity in skin. Table 6 also shows that the role of proteoglycans

seems to be restricted to AR multimorbidity only through neurocan (NCAN) and chondroitin

sulfate proteoglycan 5 (CSPG5). Although proteoglycans are known to influence the remodel-

ling of nasal mucosa in R [119], no evidence exists linking them to allergic multimorbidity.

However, our results indicate that TLRs are characteristically associated to multimorbidity

involving R (Table 4), so there may be an interesting link between TLRs and proteoglycans in

relation to AR multimorbidity, since it is known that chondroitin sulfate proteoglycans have

the ability to bind TLRs and activating macrophages [120].

Comparison to our previous study

In our previous in silico study of multimorbidity between A, D and R, we explored multimor-

bidity at whole organism level [21]. In this study we incorporated additional data that reflects

the spatial cell-type-specific nature of the diseases and their multimorbidity. This presents a

key opportunity to better understand the mechanisms of diseases, since cell-type-specific data
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provides a more accurate picture of multimorbidity. We incorporated changes in the method-

ology as well. It remains focused on exploiting the topology of the interactome, but adopting a

more complex approach that measures the role of pathways not only in terms of their direct

interactions to individual disease-associated genes, but in terms of their global connectivity to

those genes within a specific network.

Methodologically, differences in the gene-disease data sources used in both studies have an

impact in the characterization of disease-associated genes. Also, availability of expression data

limited the number of genes present in the study. For instance, thymic stromal lymphopoietin

(TSLP), found to be associated to A, D and R in our previous study, is absent in this study

because it was not present in the expression compendium. Also, pathway annotation in our

previous study was extracted from BioCarta database, which is no longer updated, which made

us chose Reactome database instead.

One of the main findings in our previous study was the significant role of eosinophilic-

mediated pathways in AD multimorbidity (BioCarta pathways CCR3 signaling in Eosinophils
and The Role of Eosinophils in the Chemokine Network of Allergy were identified with a high

score). Because eosinophils were not included in the present study, the Reactome equivalents

of those pathways (S1 Table) are not present in our results, confirming that our observations

can be linked to mechanisms mediated by other cell types. IL10 signaling pathway, a relevant

mechanism in AD multimorbidity across many cell types, was also identified amongst the

highest-scoring pathways in our previous study (under the BioCarta denomination Regulation
of hematopoisesis by cytokines). Our previous study also linked IL4-mediated, GATA3-medi-

ated mechanisms and 4–1BB-dependent immune responses to ADR multimorbidity. GATA3-

mediated mechanisms are represented in our dataset by interleukin pathways in the Cytokine
signaling in immune system category, and, from a cell-type-specific point of view, these pro-

cesses seem more relevant in AD multimorbidity (despite the fact that IL1, IL4 and IL13 signal-

ing in particular also contribute to ADR multimorbidity in some cell types). Aside from

differences in pathway annotation of genes, this could reflect a more systemic role for these

pathways in ADR multimorbidity. However, 4–1BB-dependent immune response (represented

by Toll-like receptor cascades in our dataset) is clearly associated to AR, DR and ADR multi-

morbidity in a number blood-derived cell types. In all, we believe that our results are comple-

mentary to those of our previous study since they focus on the cell-type-specific mechanisms

of multimorbidity instead of global (or systemic) ones.

Conclusions

We designed an in silico approach that integrated current public expression and network inter-

action databases and applied an interactome-based analysis to uncover the cell-type-specific

pathophysiological mechanisms of multimorbidity between A, D and R. We observed that

interleukin-mediated signaling is present in all multimorbidities involving asthma but not rhi-

nitis, while rhinitis-associated multimorbidities have a strong TLR-mediated component. IL1
signaling is the only type-2 pathway candidate for AR multimorbidity, found in esophageal

epithelium. We also generated a collection of genes potentially linked to cell-type-specific mul-

timorbidity, some of which were not previously associated to any of the diseases. Our results

provide a better understanding of the pathophysiological mechanisms triggering ADR multi-

morbidity, assisting in the design of new mechanistic and clinical studies.

Supporting information

S1 Fig. Illustration of the process to calculate cell-type-specific multimorbidity. This

toy example uses a simplified network of the cell type c, where we will measure the
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multimorbidity score MS for diseases d1 and d2. The numbers circled in grey correspond to

the numbered steps in the section Calculating cell-type-specific multimorbidity of Methods.
(A) Genes associated to dis1 (6, orange border) are given an initial score of 1, while all other

genes are given a score of 0. (B) The NetScore algorithm scores all genes in the network

according to their connectivity to the D-associated genes (blue gradient). Genes in closer

proximity to dis1-associated genes get higher scores. (C) The top-scoring genes are selected

(in blue). Disease dis1 has 13 top-scoring genes (Sc
dis1). (D) Genes associated to dis2 (5, in

orange border) are given an initial score of 1, while all other genes are given a score of 0.

(E) The NetScore algorithm scores all genes according to their connectivity to the dis2-asso-

ciated genes (blue gradient). (F) The top-scoring genes are selected (in blue). Disease dis2
has 47 top-scoring genes (Sc

dis2). (G) There is 1 gene common to both top-scoring sets (in

blue). The Multimorbidity Score (MS) of the diseases is calculated as the Sorensen-Dice

overlap between their top-scoring gene sets. In this case, MSc
dis1,dis2 is (2 � 1) / (6 + 47) =

0.038. A permutation test over 103 iterations will establish if MSc
dis1,dis2 is statistically signifi-

cant (P < 0.05).

(PNG)

S2 Fig. Illustration of the process to characterize cell-type-specific multimorbidity mecha-

nisms. This example uses the network of S1 Fig (225 genes). The pathway P has a total of anno-

tated 20 genes, of which 9 are in the network (shown in orange border). (A) The 13 top-

scoring genes for disease d1 (Sc
d1; see S1C Fig) are shown in blue, and there are 3 pathway

genes within this set. Thus, the perturbation score PSc
d1,P is (9/20) / (13/225) = 7.79. For the

sake of the example, we will assume that this value is significantly larger than random expecta-

tion (P< 0.05). (B) The 47 top-scoring genes for disease d2 (S c
d2; see S1F Fig) are shown in

blue. There are 7 pathway genes within the Sc
d2 set. Thus, the perturbation score PSc

d2,P is (9/

20) / (47/225) = 2.15. For the sake of the example, we will assume that this value is significantly

larger than random expectation as well (P< 0.05). Consequently, because pathway P is signifi-

cantly associated to (or perturbed by) diseases d1 and d2, we assume that it is part of the mech-

anism of multimorbidity between dis1 and dis2 in cell type c.

(PNG)

S1 Table. Association between Reactome pathways and BioCarta pathways. Only signifi-

cant associations are shown. LOR: Log Odds Ratio.

(XLS)

S2 Table. List of cell-type-specific genes. This table contains: 1) the database sources of

diease-associated genes; 2) the complete list of cell types and tissues (including those without

disease-associated genes, discarded in this study); 3) the list of all cell-type-specific genes.

(XLS)

S3 Table. Fraction of disease-associated genes in each cell type. Statistical significance was

calculated by means of a Fisher’s Exact Test.

(XLS)

S4 Table. Fraction of pathway-associated genes present in each cell type.

(XLS)

S5 Table. List of genes associated to each pathway in each cell-type-specific network.

(XLS)

S6 Table. The connectivity Ccp of the pathways.

(XLS)
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S7 Table. Summary of Tables 2 and 3. The column n diseases contains the number of diseases

(A, D, R) with a significant number of associated genes from Table 2 (values are highlighted in

blue gradient). The column n MS> 0 contains the number of combinations of diseases (AD,

AR, DR, ADR) with nonzero MS from Table 3 (values are highlighted in red gradient). The

column n MS> 0.50 contains the number of combinations of diseases (AD, AR, DR, ADR)

with MS> 0.50 (also from Table 3, highlighted in red gradient).

(XLS)

S8 Table. Cellular pathways associated to multimorbidity between asthma, dermatitis

and rhinitis. Red cells: multimorbidity between A and D. Orange cells: multimorbidity

between A and R. Light blue cells: multimorbidity between D and R. Dark blue cells: multi-

morbidity between A, D and R. Only cell types not present in Table 4 in the manuscript are

shown.

(XLS)

S9 Table. Pathways associated to diseases in the cell-type-specific networks. A: asthma. D:

dermatitis. R: rhinitis. Only significant associations (P< 0.05) are shown.

(XLS)

S10 Table. Complete list of candidate genes for multimorbidity. Colors and dots are as in

Tables 5 and 6 in the manuscript. Pathway associations with a grey background mean that the

pathway was not associated to the corresponding cell type (see Table 4, S8 Table).

(XLS)

S11 Table. Comparison of multimorbidity scores. Scores for AD, AR and DR multimorbid-

ities from Table 5 (30 top-scoring genes) and S10 Table (all genes) are pairwisely compared by

means on a Wilcoxo-Mann-Whitney paired test.

(XLS)

S1 Text. Supplementary Methods.

(PDF)
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