702 research outputs found

    Vacuum Stability of the wrong sign (ϕ6)(-\phi^{6}) Scalar Field Theory

    Full text link
    We apply the effective potential method to study the vacuum stability of the bounded from above (ϕ6)(-\phi^{6}) (unstable) quantum field potential. The stability (E/b=0)\partial E/\partial b=0) and the mass renormalization (2E/b2=M2)\partial^{2} E/\partial b^{2}=M^{2}) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the PT\mathcal{PT}-symmetric ϕ4\phi^{4} theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (ϕ6)(-\phi^{6}) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in dd space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but PT\mathcal{PT}-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (ϕ6)(-\phi^{6}) scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added some figure

    Manganese pigmented anodized copper as solar selective absorber

    Get PDF
    The study concerns the optical and structural properties of layers obtained by a new efficient surface treatment totally free of chromium species. The process is made up of an anodic oxidation of copper in an alkaline solution followed by an alkaline potassium permanganate dipping post-treatment. Coatings, obtained at the lab and pilot scales, are stable up to 220 °C in air and vacuum, present low emissivity (0.14 at 70 °C) and high solar absorptivity (0.96), i.e. a suitable thermal efficiency (0.84 at 70 °C)

    Exact vortex solutions in a CP^N Skyrme-Faddeev type model

    Full text link
    We consider a four dimensional field theory with target space being CP^N which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP^1. We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x^1+i x^2) and (x^3+x^0) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.Comment: 21 pages, plain latex, no figure

    Deep COLA: A Deep COmpetitive Learning Algorithm for Future Home Energy Management Systems

    Get PDF
    A smart grid ecosystem requires intelligent Home Energy Management Systems (HEMSs) that allow the adequate monitoring and control of appliance-level energy consumption in a given household. They should be able to: i) profile highly non-stationary and non-linear measurements and ii) conduct correlations of such measurements with diverse inputs (e.g. environmental factors) in order to improve the end-user experience, as well as to aid the overall demand-response optimisation process. However, traditional approaches in HEMS lack the ability to capture diverse variations in appliance-level energy consumption due to unpredictable human behaviour and also require high computation to process large datasets. In this paper, we go beyond current profiling schemes by proposing Deep COLA; a novel Deep COmpetitive Learning Algorithm that addresses the limitations of existing work in terms of high dimensional data and enables more efficient and accurate clustering of appliancelevel energy consumption. The proposed approach reduces human intervention by automatically selecting load profiles and models variations and uncertainty in human behaviour during appliance usage. We demonstrate that our proposed scheme is far more computationally efficient and scalable data-wise than three popular conventional clustering approaches namely, K-Means, DBSCAN and SOM, using real household datasets. Moreover, we exhibit that Deep COLA identifies per-household behavioral associations that could aid future HEMSs

    A qualitative study exploring perceptions and attitudes of community pharmacists about extended pharmacy services in Lahore, Pakistan

    Get PDF
    Background In recent decades, community pharmacies reported a change of business model, whereby a shift from traditional services to the provision of extended roles was observed. However, such delivery of extended pharmacy services (EPS) is reported from the developed world, and there is scarcity of information from the developing nations. Within this context, the present study was aimed to explore knowledge, perception and attitude of community pharmacists (CPs) about EPS and their readiness and acceptance for practice change in the city of Lahore, Pakistan. Methods A qualitative approach was used to gain an in-depth knowledge of the issues. By using a semi-structured interview guide, 12 CPs practicing in the city of Lahore, Pakistan were conveniently selected. All interviews were audio-taped, transcribed verbatim, and were then analyzed for thematic contents by the standard content analysis framework. Results Thematic content analysis yielded five major themes. (1) Familiarity with EPS, (2) current practice of EPS, (3) training needed to provide EPS, (4) acceptance of EPS and (5) barriers toward EPS. Majority of the CPs were unaware of EPS and only a handful had the concept of extended services. Although majority of our study respondents were unaware of pharmaceutical care, they were ready to accept practice change if provided with the required skills and training. Lack of personal knowledge, poor public awareness, inadequate physician-pharmacist collaboration and deprived salary structures were reported as barriers towards the provision of EPS at the practice settings. Conclusion Although the study reported poor awareness towards EPS, the findings indicated a number of key themes that can be used in establishing the concept of EPS in Pakistan. Over all, CPs reported a positive attitude toward practice change provided to the support and facilitation of health and community based agencies in Pakistan

    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EγT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8  pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  μb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy

    Search for supersymmetry at √s = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μμ ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at s√=13s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1−1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95%95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
    corecore