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Abstract. Continuous area coverage missions are a fundamental part
of many swarm robotics applications. One of such missions is coopera-
tive surveillance, where the main aim is to deploy a swarm for covering
predefined areas of interest simultaneously by k robots, leading to bet-
ter overall sensing accuracy. However, without prior knowledge of the
location of these areas, robots need to continuously explore the domain,
so that up-to-date data is gathered while maintaining the benefits of si-
multaneous observations. In this paper, we propose a model for a swarm
of unmanned aerial vehicles to successfully achieve cooperative surveil-
lance. Our model combines the concept of Lévy Walk for exploration
and Reynolds’ flocking rules for coordination. Simulation results clearly
show that our model outperforms a simple collision avoidance mecha-
nism, commonly found in Lévy-based multi-robot systems. Further pre-
liminary experiments with real robots corroborate the idea.

Keywords: Lévy Walk · Swarm Intelligence · Reynolds’ flocking · Surveil-
lance Area Coverage · Swarm Robotics.

1 Introduction

The benefits of swarm intelligence techniques have been widely exploited in co-
operative missions [1–7]. A particular advantage of these techniques is the focus
on generating decentralized controllers, allowing for greater scalability in real-
world applications. Such applications often require the swarm to deal with the
lack of prior knowledge of the domain, as well as demanding reliable up-to-date
information [8]. This is particularly true in surveillance and monitoring tasks in
a variety of domains, such as: inspection and surveillance [9,10], search & rescue
[8,11], and agriculture [12–14]. Both surveillance and monitoring tasks focus on
developing control laws which enable groups of robots to transverse and observe
a given domain, but with a slightly different focus. The goal of surveillance is
to maximize some measure of coverage or information gathering, while moni-
toring focuses on ensuring that certain areas of the domain (usually predefined)
are visited with a certain frequency. To tackle these tasks, aerial swarms have
been widely employed as the preferred vehicle [15], due to their intrinsic abil-
ity to gather data over a wide field of the ground plane, for example, through
a down facing camera. However, as their distance to the ground increases, the
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resolution of observations decreases [16]. Furthermore, the accuracy of these ob-
servations is also affected by the noisy characteristics inherent to any sensor
leading to inaccuracies [17]. These factors have led researchers to propose that
several simultaneous observations of the same point would yield a more accurate
measurement [17,18]. This proposition is extremely useful when considering un-
manned aerial vehicles (UAVs), since their overlapping sensing regions (or fields
of view) on the ground plane, are the means by which these desired multiple
simultaneous observations can be gathered. Figure 1 depicts an example where
three quadcopters share points in their respective fields of view. This ability to
maintain an overlap of sensing regions, naturally requires robots to be able to
coordinate, while on the other hand, the very nature of the surveillance task,
requires robots to continuously explore the domain [19].

Fig. 1. Fields of view for 3 aerial vehicles, where the darker shades represent the areas
sensed simultaneously by more than one UAV.

Examples of such exploratory behaviours are widely found in natural soci-
eties, such as in honeybees [20], sharks [21] and primates [22]. In fact, foraging
individuals in these societies have been noted to explore an environment by cou-
pling periods of localized random walks with periods of ballistic relocation across
the domain [23]. This exploratory behaviour is known as Lévy Walk (LW) [24]
and has been successfully used as an exploratory behavior for single-agent sys-
tems [25], as well as in swarm-based systems [26]. In contrast to previous works,
we focus on studying the ability of robots within swarm, not only to coordinate
in order to maintain the aforementioned overlapping sensing regions, but to do
so while preforming LWs, leveraging exploration. We propose that this can be
accomplished by merging a biologically-inspired coordination strategy and a LW
controller, in a decentralized manner. Such coordination strategies have long
drawn inspiration also from natural agents’ inherent ability to coordinate using
only simple and local control rules [27]. The most popular of such frameworks
was introduced by Reynolds in [28], where the rules to generate flocking be-
haviours were proposed. In our work, we bringing together the flocking rules
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proposed by Reynolds, and the LW motion model, effectively creating a system
that seamlessly integrates both coordination and exploration.

1.1 Contribution

The main contribution of this paper is the development of a decentralized model,
integrating the coordination mechanism based on Reynolds’ rules, with and an
exploratory behaviour based on Lévy Walk. We test our model in a simulated
environment on a cooperative surveillance task. The aim is to explore a given
domain, while maintaining an overlap between the regions sensed by robots of the
swarm. We also demonstrate our controller with proof-of-concept experiments
with two drones.

2 Swarm Systems

2.1 Surveillance in Swarm Systems

Surveillance tasks in multi robot systems have been long addressed by the re-
search community [9]. Some of the initial works in this area focused on optimizing
policies, considering trajectory planning, energy consumption and dynamic con-
straints for a single robot, which were later extrapolated into the multi-robot
scenario [29]. Other works developed model-based strategies to determine feasi-
ble trajectories in real time while also considering detailed sensing models [30],
or considering the task routing problem with a set of predefined locations that
need to be visited [31]. More recently authors also applied the flocking strategy
proposed by Reynolds to address coordination [32], using a pheromone map to
guide the swarm to explore new regions. While control actions were computed
in a decentralized manner, the pheromone map is treated as a central shared
resource, of which every robot is assumed to have knowledge at any point in
time. We should highlight that, even if these works focus on the surveillance
task by employing an aerial swarm, neither of them address the extra constraint
of having overlapping sensing regions.

Another approach to surveillance using aerial swarms was proposed by Saska
in [9]. In this work a Particle Swarm Optimization (PSO) based method was
used to derive individual robot trajectories before deployment, with prior knowl-
edge of areas of interest to be visited, therefore centralising the method on the
planning level. However, authors demonstrate that, after deployment, on-board
sensing can be used in a distributed fashion to adjust trajectories using relative-
localization methods between UAVs, in cases where external localization is non-
existent or lacks the desired precision. Even though this work mentions the ben-
efits that multiple simultaneous observations can bring, the metrics presented
focus mainly on the output of their proposed PSO in regards to the areas visited
and accuracy of individual pose estimation.

Interestingly, the topic of overlapping sensing regions has been given more
attention in the field of Wireless Sensing Networks (WSNs) [33] [34]. However,
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works in this field usually assume that a predefined set of areas exist such that
each point needs to be observed by k sensors simultaneously, a task known as k-
coverage [35]. Approaches to k-coverage using robots mainly focus on: optimizing
the number of robots to be deployed for the desired coverage constraints [36];
optimizing energy efficiency [19], or optimizing network connectivity [37], which
tend to require prior knowledge of the set of areas of interest. Nevertheless, k-
coverage is a topic relevant to this work and as such we will use this concept
as a metric to show that our proposed model enables the swarm to achieve
simultaneous observations while exploring the domain.

2.2 Lévy Walks in Swarm Systems

Sutantyo et al. introduced the Lévy Walk (LW) into swarm applications [38],
using the notion of artificial potential fields, as a means of collision avoidance
between robots preforming LWs, for a target search task. Later, that work was
extended to consider an adaptation of the Lévy parameter (µ) based on the den-
sity of targets found [26]. Another work that deals with underwater multi-robot
search using LW is presented in [39]. However, contrary to what we will assume,
authors consider the scenario where regions of the environment are divided and
each robot explores its own assigned region. Suarez and Murphy in their sur-
vey [40] also suggest that robots should divide the environment into individual
search areas. Nevertheless, they also point out that regions of interest might not
clear at the start, and might even change over time, making it it difficult to
subdivide an environment prior to the mission. However, all the aforementioned
works focus on a slightly different problem, since they consider targets in the
domain and study their impact on each robot’s behaviour. Our approach focuses
on a more fundamental aspect of the swarm’s behaviour, namely, how can robots
both coordinate and explore, while maintaining overlapping sensing regions.

To highlight the benefits of LW in surveillance or coverage tasks, authors in
[41] have compared analytical results, considering strategies based on LW and
other random walk-based methods to show the clear advantage of the former,
in terms of overall robots’ displacement. More recent papers on Lévy Walks for
swarm systems have also focused primarily on math-based models [42], which
tend to abstract real constraints such as robots’ dynamics, communication and
sensing capabilities, as well as ability to maintain overlapping observations.

In summary, our proposed model differs from the any of the above, in two
key aspects: i) absence of predefined search regions for each robot and ii) fully
decentralized control of UAVs.

3 Proposed Model

In our model, robots use a behaviour-based controller divided into two compo-
nents: Flocking:Interaction, dealing with the coordination behaviour, and Lévy
Walk, introducing the exploratory behaviour, each outputting a velocity vector.
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3.1 Flocking:Interaction

This component, based on [28], consists of three rules: separation; cohesion; and
alignment, defined below.

Separation: Consider the ith robot, with a neighbourhood Ns of all the j
robots below a distance δs whose positions pj have their centroid at Ps defined
as:

Ps =

( ∑
j∈Ns

pj

/
Ns

)
− pi (1)

Based on the relative orientation of Ps to the position of the ith robot (ρθs) we
compute the separation contribution, in form of an angular velocity, as:

ws = β
[
0 0 wzs

]T
= β

[
0 0 (ρθs + π)− θi

]T
(2)

Where θi is the orientation of the ith robot. Note that we add π to the compu-
tation so that we consider a vector away from the geometric center Ps.

Cohesion: Consider the ith robot, with a neighbourhood Nc of all the j robots
below a distance δc whose positions pj have their centroid at Pc defined as:

Pc =

( ∑
j∈Nc

pj

/
Nc

)
− pi (3)

Based on the relative orientation of Pc to the position of the ith robot (ρθc) we
compute the cohesion contribution, in form of an angular velocity, as:

wc = γ
[
0 0 wzc

]T
= γ

[
0 0 ρθc − θi

]T
(4)

where θi is the orientation of the ith robot. Note that we do not add π to the
computation so that we consider a vector towards the geometric center Pc.

Alignment : Consider ith robot, and the average heading Θ of the j robots in
a neighbourhood Na within distance δa > δs.

Θ =
∑
j∈Na

θj

/
Na (5)

where θj is the orientation of robot j in (r p y) coordinates. The alignment
contribution, in the form of angular velocity wa, is computed as:

wa = α
[
0 0 ωza

]T
= α

[
0 0 (Θ− θi)

]T
(6)

The contribution from the interaction block, for the ith robot in the swarm, is
given by eq (8), where α, β and γ are weights between 0 and 1:
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Φi =

[
v

ws + wa + wc

]
(7)

=
[
vx 0 0 0 0 βωzs + γωzc + αωza

]T
(8)

3.2 Lévy Walk

To introduce a Lévy-based velocity command into the algorithm, we first gen-
erate the appropriate variables, i.e., target orientation ψ and walk length L.
For that we use the Lévy Generator proposed by [43] to randomly draw a Lévy
distributed variable r:

r =
sin
(
(µ− 1) ∗ Ũ1

)
cos(Ũ1)

1
1−µ

(
cos
(
(2− µ) ∗ Ũ1

)
Ũ2

) 2−µ
µ−1

(9)

where Ũ1 = U1π/2, Ũ2 = (U2 + 1)/2, and a random orientation being given by
ψ = U3π with U1 U2 U3 being uniformly distributed random variables between
0 and 1 and µ the Lévy parameter that influences the length of the jump. Fig.
2 illustrates this influence.

Fig. 2. Trajectories of one robot with different µ values. On the left µ = 3 and on the
right mu = 2, showing how higher values o µ lead to smaller walks and hence more
frequent change of orientation.

Having selected r, we draw an uniformly distributed value of ψ and compute:

x = r · cos(ψ) (10)

y = r · sin(ψ) (11)

L =
√
x2 + y2 (12)

As robots transverse space, the distance each one travels d is calculated and
updated. When this distance reaches L, a new L is generated as well as a new ψ.
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As this happens and a robot finishes its walk, it starts updating its orientation
making its neighbours react to this change and continue their trajectory in a
different direction. Similarly to before this change is forced upon a robot through
a velocity command:

wl = η
[
0 0 ωzl

]T
=
[
0 0 η

(
ψ − θ

)]T
(13)

where η is a scaling factor and θ is the yaw angle of a robot in the swarm.
This angular velocity command overrides both alignment and separation rules
in order to achieve the desired orientation. In this case linear velocity command
assumes the type of vl =

[
vx, vy, 0

]
with orientation (ρθs + π) and therefore the

Lévy based contribution to a robot’s velocity is given by eq(14). Tables 1 and 2
summarize, respectively, the notation used in our proposed model and the fixed
parameters used in the interaction component of our model.

Λi =
[
vl wl

]T
=
[
vx vy 0 0 0 ωl

]T
(14)

Table 1. Notation

Ps Centroid of the neighbours’ positions considered for the Separation rule.
Pc Centroid of the neighbours’ positions considered for the Cohesion rule.
Θ Average heading of neighbours considered for the Alignment rule.
δs Threshold below which neighbours are considered for the Separation rule.
δc Threshold below which neighbours are considered for the Cohesion rule.
δa Threshold below which neighbours are considered for the Alignment rule.
Ns Set of neighbours considered for the Separation rule.
Nc Set of neighbours considered for the Cohesion rule.
Na Set of neighbours considered for the Alignment rule.
µ Lévy parameter.
L Length of generated walk.
ws Angular velocity component output by the Separation rule.
wc Angular velocity component output by the Cohesion rule.
wa Angular velocity component output by the Alignment rule.
wl Angular velocity component output by the Lévy generator.
Φi Velocity command for agent i based on the Interaction rules.
Λi Velocity command for agent i based on the Lévy process.
pi Position of agent i.

vx, vy Linear components of the agent’s velocity in local frame.
θi Orientation of agent i.

β, γ, α Weights for Separation, Cohesion and Alignment rules respectively.

Table 2. Values of fixed parameters used in the interaction component.

δs[m] δc[m] δa[m] β γ α
1.5 2.5 2.5 5 0.2 1
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Having set the components of our proposed model, we present below the
algorithm for a seamless integration of Lévy Walks and coordination rules which
runs in a decentralized manner, for each separate UAV. Algorithm 1 shows the
conditional relationships between commands (C(t)) sent to each agent. While
time t is smaller than the total time of the experiment T , each agent computes
the interaction rules according to their respective neighbourhoods and check if
their walk is completed. The action of each agent is then conditional on its own
walk being completed or not.

Algorithm 1 Lévy Swarm Algorithm (LSA)

Initialize distance d = 0.
Assign L
Initialize control action C(t0) =

[
0 0 0 0 0 0

]
while t ≤ T do

Compute Interaction rules
if d ≥ L then . Completed Walk

Compute new ψ and L
d = 0
C(t) = Λ . Lévy Command

else
C(t) = Φ . Interaction Command

end if
Get pose
Update distance d

end while

4 Experiments and Results

In this section, we illustrate the effectiveness of the proposed model in a number
of simulated experiments. We also present a preliminary real robot experiment
that was designed to test the main components of our model using 2 Parrot
drones. A video demonstrating the results accompanies this paper1.

4.1 Simulation Experiments

Simulations were conducted on 20m by 20m grid sub-divided into tiles of 0.5m,
for evaluation, and run in GAZEBO-ROS framework. The size of the swarm was
set to 15 Parrot ar-drones, to sufficiently large for the interaction rules to have
an effect, but not excessively so, to avoid covering the domain without the need
for a strategy. A ROS-based framework was chosen due to its wide adoption in
both academia and industry, and the recognition it receives as being the de-facto
operating system for the development of applications in robotics.

1 https://youtu.be/KvEs7wQ0Ti4.

https://youtu.be/KvEs7wQ0Ti4
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Fig. 3. Initial position of 15 UAVs in an empty arena, for the simulation experiments

Each robot, i.e. Parrot ar-drone, has a down-facing camera capable of sens-
ing an area of 2.5m by 2.5m. Each robot is assumed to have an accurate esti-
mation of its pose (through GPS in simulation, and through the VICON mocap
system in the real experiments) which is communicated directly to its neigh-
bourhood. Such neighbourhood is limited by the robot’s communication range
considered to be the same as δa. Fig. 3 shows the initial positions of the UAVs in
the simulated area. These simulations considered a varying Lévy parameter (µ)
with values µ ∈]1, 3[. Each parameter (µ) was run 60 times, for a period of 1,800
seconds. Simulations were run with µ = [1.6, 2.0, 2.4, 2.8] to show differences in
the behaviour of the swarm, at low, medium and high values of µ. In this work
we quantify how many tiles of the grid-domain the swarm is able to maintain
under a certain k coverage level over time, defined as K(t). Our metric is defined
by, firstly, considering the subset of tiles sensed by UAV i at time t, i.e. Ai(t),
and define a set Ω(t) that contains all these subsets as:

Ω(t) = {Ai(t)} ∀i ≤ N (15)

where N is the number of UAVs. Through set Ω we can enumerate all the
combinations of k A subsets and create set Sk, of size

(
N
k

)
, where each member

is one of said combinations. Therefore, K(t) is the total size of intersections
between the A subsets within the elements of Sk, and defined as:

K(t) =
∑
∀j

| ∩ {Skj }j⊂J | (16)

where J is the index set of S. Results of our simulations are depicted in Fig. 4 and
show our proposed model (blue) and a simpler one with only the avoidance rule
(red), hereafter addressed as the baseline, for k ∈ [1, 2]. Our results for k = 1,
show that it is the baseline case which performs the best. Since robots only
interact to avoid each other, this creates a diffusive behaviour, that naturally
increases the number of cells sensed only by one UAV. However, in the context
of our problem we are mainly interested in the scenario where k =2.
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Fig. 4. Number of cells under k-coverage over time for k ∈ [1, 2], with our model (blue)
and the baseline (red).

Figures 4.1 and 4.1 both show how much merging the flocking rules with
the LW component impacts the results. In qualitative terms the results are com-
pletely the opposite, showing how this merging of techniques leads to a significant
outperforming behaviour when k = 2.
It is also interesting to highlight that as the value of µ increases, the perfor-
mance of the system tends to the baseline case, showing that as µ approaches its
maximum value, the local exploratory component of the system dominates the
coordination mechanism. However, by observing Fig. 4 alone one cannot assess
about the effectiveness of exploration, since there is no indication if the cells
sensed at a given point in time are the same, or not, than the cells sensed at
a later stage. To assess this, we introduce a random variable Xk, that repre-
sents the total number of different cells sensed by k UAVs and whose probability
distribution, P (Xk), is shown in Fig. 5.
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Fig. 5. Simulated P (Xk) for k=2, with our model (blue) and the baseline (red).

This result also highlights the benefit of our model, which invariably leads to
a higher mean of different cells sensed, leading to a higher probability of sensing
all the cells of the domain with k = 2 robots . This advantage is evident in the
results obtained with our model, always outperforming its baseline counterpart
for each value of µ.

4.2 Preliminary Real Experiments

In order to further investigate the role of k in the simulation, some preliminary
experiments were conducted with two real Parrot ar-drones in a 3x3m arena.
To consider a similar ratio between the size of the arena domain and the size
of each tile of the grid, tiles are considered to be 0.05x0.05m. Fig. 6 shows this
domain as well as the initial positions of the two UAVs.

Fig. 6. Initial positions of 2 ar-drones
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Similarly to the simulated experiments, we first plot the total number of cells
sensed by k UAVs over time t. Figures 4.2 and 4.2 show these results.

Fig. 7. Experimental number of cells under k-coverage for k = [1, 2] with our model
(blue) and the baseline (red).

The first noticeable difference between simulated and real results is the ap-
parent lack of effect of µ in both cases. In fact, since Lévy processes tend to
occur over long distances, the preliminary scenario used is too small for such
investigation. Nevertheless one can still draw a parallel with simulated results
where values for k are concerned. On one hand, for k = 1, the baseline always
yields a higher value, as expected since k = 1 favours a diffusion behaviour,
rather than a coordinated one. On the other hand, for k = 2, the results are
again reversed, being our model able to outperform the baseline.
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Fig. 8. Experimental P (Xk) for k=2, for our model (blue) and the baseline (red).

The same is true for the probability distributions of X , depicted in Fig. 8,
where our model continues to show a higher average number of cells being sensed
by k UAVs simultaneously.

5 Conclusions and Future Work

This paper presented a swarm model that combines coordination and explo-
ration strategies using UAVs for collaborative surveillance. Our model is fully
decentralized, with minimal direct communication between robots [44] and does
not require global knowledge or partitioning of the domain. This model is, to
the best of our knowledge, the first to merge the Reynolds flocking rules and the
Lévy Walk exploration strategy.

Simulation results were assessed based on two metrics. The first, K(t), rep-
resents the total number of tiles, in a grid domain, sensed by k UAVs at time t.
The second, P (Xk), represents the distribution of the number of different cells
sensed by k UAVs over the course of the experiment. Both metrics have shown
the advantage of the proposed model for k-coverage when = 2. Merging the flock-
ing rules with the LW strategy, always increased the performance of the system,
when compared to the baseline case where only collision avoidance exists. Our
results show that, choosing lower values of µ is preferential when our model is
adopted. On the other hand, in the baseline case, the performance of the sys-
tem, in respect to K(t), seems to be independent of µ. Since the only interaction
between agents is collision avoidance, we infer that this aspect, rather than the
LW, is the predominant behaviour, pointing towards the need for future work
on the study of interference among agents in a swarm.
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The effect of µ, in both our model and the baseline, is evident in the second
metric, P (Xk). The results show that higher values of µ tend to lead to a lower
mean of (N) different cells being discovered, reflecting the expected behaviour of
the LW for values of µ in this range. Noticeably, when comparing the distribu-
tions P (Xk) between our model and the baseline, the mean value of P (Xk) is
always higher in our model, than the respective baseline result. This shows that,
for the same mission time, the baseline approach restricts the swarm from sens-
ing a higher number of different cells simultaneously with k UAVs. These results
corroborate the hypothesis that merging both behaviours ensures that a larger
portion of the domain is covered, maintaining the desired overlapping sensing
regions. Despite the positive results favouring our model, the difference between
probability distributions is less evident in simulation than in real experiments.

Future work will focus on studying the behaviour of our coordination algo-
rithm with more realistic sensing and communication models as well as perform-
ing a sensitivity analysis regarding the swarm size and flocking parameters. We
aim to assess the performance of our approach applied to a larger swarms of
flying drones, in terms of k-coverage but also in terms of its ability to deal with
robots’ failures and other unexpected events.

We also would like to conduct experiments on variations of the Lévy Walk
concept. For instance, by including inertial motion, making the change of orien-
tation not uniformly random but biased towards the current heading. This way
we could maximize the crossing of the entire domain. Another example, would
be to explore other Lévy Walk parameters using machine learning techniques,
more specifically, artificial homeostatic systems [45–47], evolutionary approaches
[48] [49] or a combination of both [50,51].
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Vargas, and Torsten Braun. The use of unmanned aerial vehicles and wireless sensor
networks for spraying pesticides. Journal of Systems Architecture, 60(4):393 – 404,
2014.

14. Dario Albani, Joris IJsselmuiden, Ramon Haken, and Vito Trianni. Monitoring and
mapping with robot swarms for agricultural applications. In 2017 14th IEEE In-
ternational Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–6. IEEE, 2017.

15. Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay
Kumar. A survey on aerial swarm robotics. IEEE Transactions on Robotics,
34(4):837–855, 2018.

16. Dario Albani, Tiziano Manoni, Daniele Nardi, and Vito Trianni. Dynamic uav
swarm deployment for non-uniform coverage. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pages 523–531.
International Foundation for Autonomous Agents and Multiagent Systems, 2018.
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Alexandre Colombo, Pedro H Fini, Leandro Villas, Fernando S Osório, Patŕıcia A
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36. Santosh Kumar, Ten H Lai, and József Balogh. On k-coverage in a mostly sleeping
sensor network. In Proceedings of the 10th annual international conference on
Mobile computing and networking, pages 144–158. ACM, 2004.

37. Ines Khoufi, Pascale Minet, Anis Laouiti, and Saoucene Mahfoudh. Survey of de-
ployment algorithms in wireless sensor networks: coverage and connectivity issues
and challenges. International Journal of Autonomous and Adaptive Communica-
tions Systems, 10(4):341–390, 2017.

38. Donny K Sutantyo, Serge Kernbach, Paul Levi, and Valentin A Nepomnyashchikh.
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