Journal of Petroleum Exploration and Production Technology
https://doi.org/10.1007/513202-018-0496-6

REVIEW PAPER - PRODUCTION ENGINEERING

@ CrossMark

A preliminary screening and characterization of suitable acids
for sandstone matrix acidizing technique: a comprehensive review

Leong Van Hong'® - Hisham Ben Mahmud'

Received: 23 January 2018 / Accepted: 4 June 2018
© The Author(s) 2018

Abstract

Matrix acidizing is a broadly developed technique in sandstone stimulation to improve the permeability and porosity of a
bottom-hole well. The most popular acid used is mud acid (HF-HCl). It is a mixture of hydrofluoric acid and hydrochloric
acid. However, one of the conventional problems in sandstone acidizing is that mud acid faces significant issues at high
temperature such as rapid rate of reaction, resulting in early acid consumption. This downside has given a negative impact
to sandstone acidizing as it will result in not only permeability reduction, but can even extend to acid treatment failure.
So, the aim of this study is to provide a preliminary screening and comparison of different acids based on the literature to
optimize the acid selection, and targeting various temperatures of sandstone environment. This paper has comprehensively
reviewed the experimental works using different acids to understand the chemical reactions and transport properties of acid
in sandstone environment. The results obtained indicated that fluoroboric acid (HBF,) could be useful in enhancing the
sandstone acidizing process, although more studies are still required to consolidate this conclusion. HBF, is well known
as a low damaging acid for sandstone acidizing due to its slow hydrolytic reaction to produce HF. This would allow deeper
penetration of the acid into the sandstone formation at a slower rate, resulting in higher porosity and permeability enhance-
ment. Nevertheless, little is known about the effective temperature working range for a successful treatment. Considering the
pros and cons of different acids, particularly those which are associated with HF and HBF,, it is recommended to perform a
comprehensive analysis to determine the optimum temperature range and effective working window for sandstone acidizing
before treatment operation. Prior to sandstone acid stimulation, it is essential to predict the feasibility of acid selected by
integrating the effects of temperature, acid concentration and injection rate. Therefore, this manuscript has thrown light into
the research significance of further studies.
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Introduction

In the recent years, the energy demand around the globe has
continued to grow. According to a prediction, the aggregate
requirement of energy would be 40% more in 2020 than in
the present (Aboud et al. 2007). Hence, the oil and gas sec-
tor continues to expand the limit and boundary in terms of
technology and commercial aspects. Innovative and feasible
technology development in well stimulation and enhanced
oil recovery (EOR) become one of the primary focuses in
the oil field.

Matrix acidizing is a broadly developed technique in well
stimulation. During acidizing process, acids are injected
into the bottom-hole well with a pressure below the forma-
tion fracture pressure. Ever since the mid-1960s, sandstone
matrix acidizing has gained wide application and played an
important role in the petroleum industry (Kalfayan and Met-
calf 2000). Different acids had been developed to stimulate
depleted sandstone reservoir after many years of oil and gas
production. Acid is playing an important role to improve the
porosity and permeability of a reservoir formation. The other
function of acid is to reduce the formation damage as well
as enhancing the productivity of the well (Kalfayan 2008).

The most popular acid used in sandstone stimulation
treatment is the mud acid. Hydrofluoric acid (HF) and
hydrochloric acid (HCI) are being mixed and combined to
form the mud acid. Indeed, this is because HF can effectively
dissolve the minerals present in a sandstone matrix whereas
HCl is well known in precipitation control (Smith and Hen-
drickson 1965). Nevertheless, high temperature well acidiz-
ing is of utmost importance. Recently, reservoirs with great
depth and temperature have become the center of attention
to exploration of new oil and gas reserves (Al-Harthy et al.
2009). Wells are producing from deep hot reservoir, with a
temperature higher than 200 °F. These reservoirs have tem-
perature range from 100 °F and could go up to above 500 °F.
In recent years, the evolution of matrix acidizing, focusing
on high-temperature wells had limited the use of mud acid.
So, all aspects in acid stimulation such as efficiency of acid,
corrosion rate and stability must be improved to ensure suc-
cessful well treatment (Gidley 1985).

There are some significant problems of using conven-
tional mud acid at a temperature higher than 200 °F. At high-
temperature conditions, mud acid can lead to rapid rate of
reaction with the mineral content in the sandstone matrix
(Shuchart and Gdanski 1996; Al-Dahlan et al. 2001). As a
result, the acidizing process becomes inefficient and may
even fail mainly due to early and rapid consumption of the
acid (Al-Harthy et al. 2009). Moreover, the use of HF acid
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during well stimulation was discovered to cause significant
reduction of the formation compressive strength, especially
formation with high clay content. Consequently, the forma-
tion will disintegrate, resulting in porosity and permeability
reduction (Thomas and Crowe 1981). In addition, mud acid
has highly corrosive properties, making it a hazardous acid
that is difficult for health and safety control. Therefore, the
acidizing treatment has become less efficient. It is noticeable
that high-temperature sandstone acidizing technique is in
growing demand and, therefore, has become the attractive
spot of current research.

Against this background, it is critical to develop new acid
combination, which can mitigate the issues caused by con-
ventional mud acid at elevated temperatures. At the same
time, the new acid combination has a role in formation
porosity and permeability enhancement, ensuring positive
economic returns. There have been a number of acids that
had been developed and used in the sandstone well stimula-
tion. These acids include the most popular mud acid, chelat-
ing agents, retarded acids, organic acids as well as fluoro-
boric acid (HBF,).

The primary aim of this paper is to comprehensively and
critically review all the experimentations that were per-
formed using all these different types of acid. In this paper,
a preliminary screening and comparison of different acids
based on the literature studies were conducted to optimize
the selection of acid, targeting various temperatures of sand-
stone condition. Synchronously, an evaluation of the pros
and cons of the acids used in association with sandstone
formation were clearly addressed and highlighted.

In the past, many researchers had proven various advan-
tages that were offered by fluoroboric acid (HBF,) and phos-
phoric acid (H;PO,) when compared to the mud acid. HBF,
can produce HF through slow hydrolysis process. On the
other hand, H;PO, functions like a buffer acid, which ena-
bles a deeper penetration of acid into the sandstone matrix
before being spent. Similarly, both these acids result in
higher permeability increase, lower strength reduction of
the core plugs and relatively lower corrosiveness. Despite
this, there are few studies indicating the precise temperature
range, in which HBF, can be suitably applied, resulting in
successful sandstone acid treatment.

Therefore, considering all the aspects of acids such as
the effects of temperature, acid concentration and injection
rate in particular, it is recommended to carry out a detailed
optimization analysis based on parametric study or sensi-
tivity analysis approach. This is especially crucial to accu-
rately determine the optimum temperature range to ensure a
highly positive sandstone acidizing treatment results. Hence,
this manuscript has provided an outlook or insight into the
research significance of further studies. The future analyti-
cal work which can be done to characterize the acids was
also proposed.

Background
Well stimulation

The operations in oil and gas field such as drilling, com-
pletion, workover, production and other long-time opera-
tions resulted in the deposition of minerals near wellbore
over time. Consequently, this results in production deple-
tion due to formation damage occurring around the well-
bore (Williams et al. 1979). Therefore, field engineers
must determine the solution to perform well treatment to
bring up the productivity of the wells to ensure economic
returns. One such solution is known as well stimulation
(Schechter 1992; Economides et al. 2013).

Well stimulation is a technique applied to enhance the
production of oil or gas from the reservoir to the wellbore.
It has played an important role in the development of oil and
gas wells, ensuring good economic returns (Cipolla 2003).
In recent years, many creative and innovative approaches are
used to treat the wells (Coulter 2011). Hydraulic fracturing
enhances the oil and gas production by creating fracture in
the reservoir well through injection of hydraulic fluid at a
pressure higher than that of the formation pressure (Econo-
mides et al. 2013). In the industry, hydraulic fracturing still
represents the higher interest in well stimulation. However,
acidizing also plays a major role in different case studies.
The use of main acid like hydrochloric acid and other acids
such as hydrofluoric acid, formic acid and acetic acid is
important (Coulter 2012).

The most common stimulation techniques include hydrau-
lic fracturing, matrix acidizing and fracture acidizing. Each
of these techniques has different advantages and limitations
in stimulating a well. Figure 1 shows the penetration of acid
being injected into a sandstone matrix during acidizing.

Often, questions have been raised upon the choice of
fracturing or acidizing. In fact, the decision whether to
fracture a well or acidize it depends on various factors
which include the formation geology, production history
and well-intervention objectives (Al-Harthy et al. 2009).

The loose formations with relatively better porosity and
permeability require less intensive hydraulic fracturing,
whereas tight formations with relatively lower porosity and
permeability require high-intensive hydraulic fracturing.
The formation permeability is a very important parameter
to be considered before performing hydraulic fracturing
(Holman 1982). However, for loosely bound formations,
hydraulic fracturing has high tendency to cause formation
collapse due to the overburden pressure. Furthermore, the
formation with damage due to drilling and production is
not recommended to be stimulated with hydraulic fractur-
ing. Instead, matrix acidizing is more suitable for such
formation (Houseworth 2014).
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Fig. 1 Pore-scale figure of
matrix acidizing process when
the acid is being injected and
acid passes through the pore
space illustrated by Veldkam
and Boxem (2015)

In common practice, acid fracturing is applied to carbon-
ate formations, which are rich in limestones and dolomites
(King 1986; Milligan 1994). The acid is channeled into the
fracture surface to prevent it from being closed by overbur-
den stress. Acid fracturing is more successful to be applied
in carbonate formations with high natural fractures and high
permeability (Houseworth 2014).

For sandstone formations, matrix acidizing tends to have
limited penetration depth. Typically, matrix acidizing has
a shorter penetration depth of about 0.3 m in comparison
to hydraulic fracturing and fracture acidizing. Usually, it
is not used for formations with low permeability because
it requires long deep penetration depth to be successfully
stimulated. As such, hydraulic fracturing is more suitable
in this case. However, matrix acidizing is viable and effec-
tive when the well is naturally fractured and is normally
used to remove the formation damage near the well, which
prevents flow into the well. Hence, the acid can dissolve the
plugging minerals in the production flow path (Economides
et al. 2013). Therefore, different well stimulation methods
as shown in Fig. 2 have different practicality and suitability
for different formations.

Introduction to sandstone matrix acidizing
Sandstone mineralogy

Sandstone is a clastic sedimentary rock. Sometimes, it is
also called arenite. Sandstone is made up of silica, SiO, and
many silicate minerals. The main compositions of a sand-
stone matrix include quartz, feldspar and different forms of
clay. Zeolite may also be present in a sandstone although it
is rare (Muecke 1982). Table 1 shows the concentration of
different minerals present in a typical Berea sandstone core
sample used in the industry for core flooding test. Figure 3
shows the mineral components of a sandstone rock.
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OIL WELL STIMULATIONS

N

e Acids and/or other fluids injected
under high pressure to fracture
rock to increase oil flow

* Acid mixture dissolves
36 inches or more of rock to
increase oil flow

Fig.2 Oil well stimulation illustration

Table 1 Mineralogy of a typical Berea sandstone (Al-Shaalan and
Nasr-El-Din 2000)

Mineral Concentration (wt%) Chemical formulae
Quartz 75 SiO,

Feldspar 5 Kg.sNag sA1Si;Og
Dolomite 5 CaMg(CO3),
Siderite 5 FeCO,

Chlorite 5 Mg,Si,0,,(OH)q
Mica/Illite 5 KALSi;0,,(0OH),
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Secondary cement:
carbonate, quartz

Quartz, feldspars,
chert and mica.

Pore-lining clays,
e.g. illite

Pore-filling
clays, e.g. kaolinite

Fig.3 Constituents of sandstone, all of which are soluble in HCI-HF
mud acid system as described by Crowe et al. (1992)

When reacting with HF acid, clays and feldspar have
higher dissolution rate than quartz. This is due to the char-
acteristic of quartz which has a more stable structure and
relatively lower specific surface area.

The practice in sandstone matrix acidizing

The main purpose of matrix acidizing is to enhance the
production of a sandstone well and to reduce its skin. This
technique has been used for many years to stimulate reser-
voir formations by changing the rock properties, which are
the porosity and permeability (Crowe et al. 1992). During
operation, the injection pressure of the acid is lower than
the formation fracture pressure. When the acid is injected,
it dissolves all the minerals within the soluble reservoir
rock. This creates more pore spaces, thus increasing the
flow rate of fluid from the reservoir formation layers to
the wellbore (Ali et al. 2004). In the early stage, the use of
mud acid in sandstone acidizing is a major breakthrough
in the area of well stimulation technique (Kalfayan 2008).
The commonly practiced acid composition during opera-
tion is 3% HF and 12% HCI (Smith and Hendrickson 1965;
Gidley 1985). Table 2 shows the chemical compositions of
minerals that are present in a sandstone and their solubility
in HCI and HCL-HF mud acid.

In a typical operation, sandstone matrix acidizing is
divided into three main phases (Hill et al. 1981, 1994;
Zeit 2005; Nasr-El-Din et al. 2005), which are discussed
as follows:

Table 2 Solubility of sandstone minerals (Portier et al. 2007)

Minerals Solubility

HCl HCL-HF
Quartz No Very low
Feldspar No Low to moderate
Mica No Low to moderate
Kaolinite No High
Illite No High
Smectite No High
Chlorite Low to moderate High
Calcite High High, but CaF, precipitation
Dolomite High High
Ankerite High High
Siderite High High

1. A pre-flush phase to dissolve sodium (Na), potassium
(K) and calcium (Ca) ions that will have reactions with
the silica, forming insoluble silicates.

2. A main flush phase to dissolve the silicates, quartz, feld-
spar, clay as well as undissolved carbonates after pre-
flush.

3. An after-flush phase to remove the spent acid to keep the
wettability in its original state and clean the formation.

The treatment design of matrix acidizing

Kalfayan and Metcalf (2000) emphasized that the develop-
ment of acid treatment design is of paramount importance
to a successful sandstone acidizing treatment. Generally, the
design procedure should be based on the conventional treat-
ment steps. Technical analyses and statistical survey were
conducted extensively over 650 cases of matrix stimulation
treatments in 9 countries. The studies revealed that incorrect
field procedure was the main reason causing the acidizing
failure (Paccaloni and Tambini 1993). However, the specific
design procedure should remain open and could be reduced
to include only necessary steps, depending on case by case
basis. A few successful applications of field case study had
been demonstrated in the Netherlands (van Domelen et al.
1997), Saudi Arabia (Hashem et al. 1999), North America,
South America and Far East (Kalfayan and Metcalf 2000).
During a matrix acidizing operation, all information
such as well history, laboratory test data as well as previ-
ous operation experience are important for an engineer to
decide the acidizing treatment fluid. To ensure the success
of a matrix acidizing treatment, a comprehensive reservoir
characterization workflow approach is essential (Schmid
et al. 2016). Every detail from treatment design until
execution must be considered carefully. McLeod (1984)
recommended the treatment fluid selection guideline for
sandstone acidizing, aiming to enhance the permeability.
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Table 3 Guideline for treatment
fluid selection (Crowe et al.

1992) HCI solubility (>20%)

Condition Main acid Pre-flush
Use HCI only
High permeability (> 100 md)
High quartz (80%), low clay (<5%) 12% HCl, 3% HF 15% HCI
High feldspar (>20%) 13.5% HCI, 1.5% HF 15% HCI
High clay (> 10%) 6.5% HCl, 1% HF Sequestered 5% HCI
High iron chloride clay 3% HCI, 0.5% HF Sequestered 5% HCI
Low permeability (< 10 md)
Low clay (<5%) 6% HCl, 1.5% HF 7.5% HCI or 10% acetic acid
High chlorite 3% HCI, 0.5% HF 5% acetic acid

Table 4 Alternate sandstone acid procedures established by Portier
et al. (2007)

Well and formation conditions Treatment fluid recommendation

Bottomhole treating tempera-  1.5% HF+13.5% HCI
tures > 100 °C

Permeability <5 md 1.5% HF+13.5% HCl
Quartz content
Over 90% 3% HF +12% HCI
50-90% 3% HF +12% HCI or retarded HF
Feldspar, 15-30% 1.5% HF +13.5% HCl
Chlorite clay
1-5% 3% HF + 10% acetic acid
<5% 1.5% HF + 10% acetic or formic acid

This guideline provided the choices for acid concentration
and was formed based on different level of rock perme-
ability, clay and silt content. Table 3 shows the guideline
for treatment fluid selection. Portier et al. (2007) later also
suggested alternative sandstone acid procedures for spe-
cific formation conditions as shown in Table 4.

The use of additives in matrix acidizing

Matrix acidizing can cause a number of well problems such
as the release of fine particles, the generation of precipitants,
the formation of emulsions, the generation of sludge and
also the corrosion of steel (O’ Driscoll et al. 2005; Dehghani
2010; Rabie and Nasr-El-Din 2015). For instance, Hanafy
et al. (2015) and Hanafy and Nasr-El-Din (2016) deducted
that fines migration that was induced by clay caused porosity
reduction of 40%. At high temperatures of 150 and 250 °F,
fines migration became more sensitive to hydrochloric
acid, causing more severe porosity reduction, especially
at the outlet part of the sandstone core. There are a list of
acid additives that have been used during matrix acidizing
to solve some of the common problems that exist (Bybee
2003). Table 5 shows the summary of additives used in
matrix acidizing and their functions.

Sandstone channeling or wormholing
Wormholing pattern is common in carbonate acidizing,

whereas for sandstone acidizing, a uniform face dissolution
pattern is observed and no preferential flow path is being

Functions

Table 5 Summary of the Acid additives
additives used in matrix
acidizing and their functions Corrosion inhibitors

Clay stabilizers

Diverting agents

Iron control agents

Surfactants

To reduce or retard the rate of corrosion of steel by acid
To create an inhibitory film on the metal surface

To protect the acid pumping and handling equipment

To protect the equipment and tool such as casing, pump and valve
To keep clay and fines in suspension

To prevent migration and swelling of clays

To place the reactive fluid evenly

To bracket the interval exposed to the acidizing fluid

To dissolve the corrosion products in the casing or tubing
To dissolve the iron minerals in the well

To lower the surface and interfacial tensions

To change or maintain the wettability of the wells

To break and weaken the emulsions
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generated. It is uncommon to generate wormholes especially
in homogeneous sandstone formation. This due to low rate
of reaction between the acid HF and the quartz, which is the
major minerals present in the sandstone (Xie et al. 2005).

Nevertheless, several literature research studies indicated
that a channeling pattern, which is similar to carbonate
wormbholing could occur during sandstone acidizing process.
If the sandstone is highly heterogeneous, then a high per-
meability fine-scale channeling patter would exist (Wehunt
et al. 1993). Figures 4 and 5 show the wormholes generated
in Bandera and Berea sandstone core flooding experiment
conducted by Lamb (1998), respectively.

According to the sandstone core flooding experiment con-
ducted by Kalfayan and Metcalf (2000), it is also indicated
that some sandstone channels or wormholes were created
after being treated with 6 and 9 wt% HF, as shown in Fig. 6.
The results of laboratory investigation indicated that lower
rate of acid injection is a positive factor to generate worm-
holes in sandstone.

Literature review of experimental studies

The choices of acid and additives selection are made based
on the characteristics of reservoir rock as well as the main
purpose of the stimulation (McLeod 1984). There are many
reported experimentations that carry out investigations on
the efficiency of various kinds of acid used in sandstone
acidizing. A critical review of these significant studies has
been reported. Therefore, the outcomes of this study have
basically provided a conceptual framework for the setup and

Response of 6-inch Bandera Sandstone to 12% HC1-12% HF
at 150°F - Test #1

Fig.4 Wormbholes in Bandera sandstone by Lamb (1998)

Response of 6-inch Berea Sandstone to 123 WC1-12% WF
150°F - t 93

Fig.5 Wormbholes in Berea sandstone by Lamb (1998)

planning of experimental and numerical works that are rec-
ommended in the future.

Mud acid (HF-HCI)

Thomas et al. (2001) performed core flooding on Jauf
core samples using HCI1 and acetic acid in the pre-flush at

Fig.6 Wormholes in South American sandstone by Kalfayan and
Metcalf (2000)
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150 °C. The results reflected the importance of the pre-flush
acid used before the mud acid due to the channels created.
Channeling effects had significantly enhanced the perme-
ability during the main acid application. Then, Thomas et al.
(2002a) also investigated the effect of concentration ratio
of mud acid on the change in permeability of both Jauf and
Berea core samples. The results are shown in Table 6.

Nevito Gomez (2006) had designed, set up and tested
matrix acidizing apparatus on conventional mud acid. The
experiment was conducted on Berea sandstone core at both
room temperature and at high temperature of 100 °F. At
room temperature, higher flow rate resulted in higher perme-
ability enhancement, whereas at 100 °F, the optimum flow
rate was determined to be 30 ml/ml.

Gomaa et al. (2013) and Wang et al. (2013) had inves-
tigated the effect of mud acid concentration ratio on the
change in permeability of the sandstone core matrix at a
temperature of 180 °F. There are four different mixtures of
mud acid concentration ratio, which include 1.9% HF + 15%
HCI, 2.3% HF +10% HC], 2.6% HF + 5% HCI and 2.8%
HF + 3% HCI, respectively. All of these were tested using
the core sample by applying the core flooding method. The
experimental results indicated that all four acid mixing ratios
can positively increase the permeability of the core sample.
Nevertheless, it was observed that the result of permeability
increases when the HF-HCI ratio increases. At the same
time, there was also a reduction in the acid injection volume
required.

Abdelmoneim and Nasr-El-Din (2015) determined the
optimum HF concentration for high-temperature sandstone
formations. High temperatures of 280 and 325 °F were

used to conduct the core flooding tests on both Bandera
core and Grey Berea core. Based on the result, the cor-
relation between the optimum HF concentration and min-
eralogy was formed as an inverse relationship as shown
in Fig. 7. Retarded acid was suggested for temperatures
higher than 300 °F.

Al-Harthy et al. (2009) stated that mud acid had proven
its performance and effectiveness in sandstone acidiz-
ing, thus gaining popularity. However, it was reported to
result in rapid rate of reaction when the temperature was
increased to 200 °F. This is because of the rapid kinetics
of secondary and tertiary precipitation reactions at such
high temperature. This reduced the inefficiency of sand-
stone acidizing because of undesirably early consumption
of the acids. This was also the main reason causing acid
treatment to fail in many cases. Furthermore, significant
reduction of compressive strength of the formation with
high clay content after being treated with HF caused the
formation to disintegrate (Thomas and Crowe 1981).

HCI played an important role in mud acid as it leaves
no insoluble products from the reactions with the miner-
als. In addition to its cost-effective advantage, HCI] had
been widely applied in sandstone stimulation. However,
HCI is also highly corrosive and hazardous to the well,
especially in high-temperature, high-pressure (HTHP) for-
mation environment (Van Domelen and Jennings 1995).
Therefore in the future research, the disadvantages of mud
acid must be carefully taken into consideration. A sum-
marized classification of the reviewed experimental works
using mud acid is presented in Table 7.

Table 6 Summary of core flow

. Type of core  Core no. Treatment: Initial perme- Final perme- Final/original
test results in Jauf and Berea (1) Pre-flush ability (mD)  ability (mD) permeability
cores (Thomas et al. 2002b) (2) Main fluid ratio

(3) Overflush

Jauf 774 (1) 10 wt% acetic acid 22.7 434 1.9
(2) 4 wt% HCI-1 wt% HF
(3) 6 wt% NH,Cl1

Jauf 777 (1) 10 wt% acetic acid 18.7 180 9.6
(2) 9 wt% HCI-1 wt% HF
(3) 6 wt% NH,Cl1

Jauf 778 (1) 10 wt% acetic acid 8.5 195 22.9
(2) 12 wt% HCI1-3 wt% HF
(3) 6 wt% NH,Cl1

Berea 1 (1) 10 wt% acetic acid 73 105 1.4
(2) 9 wt% HCI-1 wt% HF
(3) 6 wt% NH,Cl1

Berea 2 (1) 10 wt% acetic acid 87 264 3.0
(2) 12 wt% HCI1-3 wt% HF
(3) 6 wt% NH,Cl1

Berea 7 (1) 10 wt% acetic acid 81 129 1.6

(2) 4 wt% HCl-1 wt% HF
(3) 6 wt% NH,CI
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Fig.7 Optimum HF concentra- 16

tion based on mineral content
determined by Abdelmoneim

o,

and Nasr-El-Din (2015) 14 1 HF 1 wt%
12
10 - HF 1.5 wt%

Clay Content, wt%
-]

6 \HF 2.5wt%

2l HF 3 wt%
2 HF 4 wt%
\\
2 3
0 ,
0 10

Fluoroboric acid (HBF,)

Mcbride et al. (1979) and Thomas and Crowe (1981) dem-
onstrated the application of fluoroboric acid in different
case studies. HBF, generates HF at a slower rate; therefore,
allowing more time for the acid to penetrate into the sand-
stone. Fluoroboric acid will hydrolyze in aqueous solution
to form hydrofluoric acid until it reaches a limit extent, as
shown in the following equations:

HBF, + H,0 — HBF,OH + HF (slow) (1)

HBF,OH + H,0 — HBF,(OH), + HF (rapid)

@

HBF,(OH), + H,0 — HBF(OH); + HF (rapid)

3
HBF(OH), + H,0 —  H;BO,+ HF (rapid). (4)

HBF, is also useful in removing formation damage as
well as stabilizing clays and other fines (Thomas and Crowe
1978, 1981; Svendsen et al. 1992). However, the retarda-
tion of HBF, becomes less significant when the temperature
increases to 150 °F. Kunze and Shaughnessy (1983) showed
that hydrolysis of HBF, in water to form HF accelerated
when the temperature increased.

Ayorinde et al. (1992) showed the advantage of HBF, in
treating a Nigerian oil well that faced severe fines migration-
related issues created by conventional mud acid. HBF, had
proven its compatibility in stabilizing fines migration. After
being acidized with mud acid, the production of the oil well
is 850 barrels liquid per day (BLPD). However, due to fines

20 30 40 50
Feldspar Content, wt%

migration, the production declined to nearly zero. After suc-
cessful HBF, treatment, the production increased to 2500
BLPD and maintained 220 barrel oil per day (BOPD) oil
production even after 1 year. Figure 8 shows the production
improvement in the Nigerian oil well.

Figure 9 demonstrates the scanning electron microscope
(SEM) results of pore filling clay before and after treatment
with conventional mud acid and fluoroboric acid, respec-
tively. It was clear from the figure in the lower left that clays
were dissolved, while the lower right shows partially fused
kaolinite platelets. This had prevented the issue of fines
migration (Ayorinde et al. 1992).

Jaramillo et al. (2010) further developed the use of HBF,
acid in sandstone acidizing by mixing organic acid and
HBF, to form a new acid system named as organic clay acid
(OCA). Many wells had been stimulated using OCA and
treated in low-temperature reservoirs at below 140 °F. The
real field results proved the effectiveness of OCA in fines
control and clay stabilization. In comparison with the ini-
tial production increase of the wells treated with an organic
mud acid, it had been observed that higher initial production
increase happened on the wells stimulated with OCA. This
indicated that OCA had successfully mitigated the issue of
fines migration caused by organic mud acid.

In addition, Feng et al. (2011) carried out an investiga-
tion on a high-temperature deep penetrating (HTDP) acid.
In this research, a mixture of complex organo-phosphate-
hydrolyzed fluoride salts was developed as a new corrosion
inhibitor. It could generate HF and, therefore, make HTDP
acid compatible at high-temperature formations. HTDP
acid was determined to have a much higher solubility for
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Table 7 Summarized interpretation of reviewed papers on mud acid used in matrix acidizing

References

Methodology Approach

Analysis

Rock type

Acid system Condition Remarks

Thomas et al. (2001,
2002a, 2002b)

Nevito Gomez (2006)

Gomaa et al. (2013) &
Wang et al. (2013)

Abdelmoneim and
Nasr-El-Din (2015)

Al-Harthy et al. Review N/A

(2009)

Experimental Core flooding

Experimental Core flooding

Experimental Core flooding

Experimental Core flooding

XRD
SEM
Thin section

CT scan

XRD

ICP

N/A

Berea sandstone
Jauf sandstone

Berea sandstone

Cream chalk Carbon-
ate

Indiana limestone

Berea sandstone
Bandera sandstone

Berea sandstone
Bandera sandstone

N/A

Mud acid

Mud acid

Mud acid

Mud acid

Mud acid

300 °F

72 °F
100 °F

180 °F

280 °F
325 °F

200 °F

Mud acid ratio of 12:3,
9:1 and 4:1 yield
different reaction
products

The higher the flow
rate, the higher the
permeability change
at room temperature

Optimum flow rate is
determined at 30 ml/
min for Berea sand-
stone at 100 °F

Single-stage mud
acid ratio of 15:1.9,
10:2.3, 5:2.6 and
3:2.8 improved the
permeability of Ban-
dera sandstone

A pre-flush using HC1
is needed

The best HF concen-
tration is 1 wt% for
Bandera sandstone
and 1.5 wt% for
Berea sandstone

Retarded acids are
recommended for
high-temperature
sandstone condition
at 300 °F

The use of mud acid at
high temperature of
200 °F leads to rapid
reaction rate and early
acid consumption

Fig.8 The production improve-
ment in the Nigerian oil well
(Ayorinde et al. 1992)

Production, BLPD

4000

3000

2000

Mud acid treatment

- <— Fluoboric acid treatment

. 0 1 2

Time, yr
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Fig.9 Comparison of SEM
results showing pore filling clay

After acid

Before acid
before and after treatment with

mud acid and fluoroboric acid ‘

(Crowe et al. 1992) N

Mud acid

Fluoboric acid

quartz mineral than mud acid and it will also cut back the
precipitation. HTDP acid is also better than HBF, in terms
of permeability enhancement.

Pituckchon (2014) investigated the chemistry of HBF,
for better understanding of its stimulation application in
real field. !'B and '°F solution-state high-field nuclear
magnetic resonance (NMR) is applied to analyze the
spent acid during the core flooding test over an interval
of time. The core flooding experiments were conducted at
75 and 200 °F to determine the effect of temperature on
the compatibility of HBF,. The results showed a reduction
in core permeability at 200 °F due to the precipitation of
amorphous silica.

Zhou et al. (2016) also performed core flooding experi-
ments using 12% HBF, combined with 12% HCI at 25 and
65 °C. The results were compared to conventional 3% HF
and 12% HCI. The results indicated that the permeability
enhancement reflected by the fluoroboric acid combination
is 40% higher than the conventional mud acid. Also, perme-
ability enhancement is greater at 65 °C than 25 °C. The work
done by Zhou et al. (2016) only compared two temperatures,
which are 25 and 65 °C. There is no optimization work being
conducted and, therefore, the optimum temperature range for
the recommended use of HBF, remains undetermined. In
addition, the core sample used is a heterogeneous sandstone,
with 9% being clay and calcite. An evaluation of the homo-
geneous clean sandstone is also recommended in the future.

A summary of classification on the reviewed experimental
works using HBF, is interpreted in Table 8.

Chelating agents

Frenier et al. (2004) developed chelant based on hydrox-
ethylaminocarboxylic acid (HACA) and tested it on Berea
sandstone. The results revealed that this HACA chelant can
be used for high-temperature sandstone reservoir. The ben-
efits of this chelant included reduced corrosion rate, reaction
rate and close to neutral pH value. HACA acts as a corrosion
inhibitor to form insoluble surface chelates. It also features
a low reaction rate with dolomite. Also, the near-neutral pH
value of HACA would eliminate the need for fluid treatment
before disposal. Therefore, this chelant had advantages con-
sidering aspects of health, safety and environment (HSE)
due to lower HSE footprint. Tuedor et al. (2006) also used a
newly developed sandstone stimulating system, which was a
chelant-based system, resulting in not only effective acidiz-
ing at 200-300 °F, but also less corrosive, safer to handle
and lower HSE footprint.

In addition, Ali et al. (2008) had studied the effect
of sodium hydroxyethylethylenediaminetriacetic acid
(Na;HEDTA), which is a low-pH solution to stimulate a
high-temperature formation in West Africa using experi-
mental approach. The result indicated that the chelat-
ing fluid is efficient in increasing the permeability of the
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high-temperature well. Moreover, Parkinson et al. (2010)
also applied an alternative approach to stimulate the produc-
tion zone of Pinda formation that is located in West Africa.
The Pinda formation was having multilayers of carbonates.
The bottomhole static temperature (BHST) of this formation
was 300 °F. The six production wells from the formation
zone were being stimulated with a pH 4 HEDTA chelant
during the main flush stage. The result showed that all the
six wells are then producing at a doubled rate after the stim-
ulation, indicating a high economical return resulted from
the stimulation acid at a high temperature.

LePage et al. (2009) investigated the reaction between
glutamic acid N,N-diacetic acid (GLDA) and calcites in
carbonate rock. GLDA had been compared to many other
chelants such as ethylenediaminetetraacetic acid (EDTA),
hydroxyethylethylenediaminetriacetic acid (HEDTA),
nitrilotriacetic acid (NTA) and ethanol diglycine acid
(EDG). In the discussion, the efficiency of GLDA is the
same as HEDTA although it is not as corrosive as HCI.
Aside from that, GLDA was also used by Mahmoud et al.
(2011) to study its effect on stimulating sandstone forma-
tions. The research focused on multiple parameters, includ-
ing temperature, rate of injection, volume and initial pH
value of GLDA. The results clearly revealed the powerful
capability of GLDA to chelate calcium, iron and magnesium.
Besides, GLDA was found to chelate even small amounts
of aluminum ions in the sandstone cores (Mahmoud et al.
2011). Moreover, the concentration of GLDA was found
to be almost the same prior to and after core flooding test.
GLDA also demonstrated a high thermal stability at 300 °F
and potentially lower corrosion properties. This was fur-
ther proven by Nasr-El-Din (2013). According to the result,
GLDA increased the core permeability of 21% at 200 °F and
84% at 300 °F, respectively, whereas, on the opposite side,
HCl resulted in the precipitation of iron hydroxide, Fe(OH),,
causing a 42% permeability reduction.

Furthermore, Reyes et al. (2015) used a low 2.5 pH
GLDA chelant to experimentally investigate its stimulation
on high-quartz clean sandstone matrix and high-clay het-
erogeneous sandstone matrix. The results reflected a 20%
permeability decrease for the clean sandstone but a 30%
permeability increase for the heterogeneous sandstone. This
indicated that this GLDA/HF chelant is more suitable for
sandstone with clay content, but not clean sandstone.

Another chelant-based fluid system was tested by Rignol
et al. (2015) to stimulate sandstone core at 375 °F, which is
an ultrahigh-temperature environment. This acid system was
a combination of low-pH chelant and fluroboric acid, HBF,.
The core plugs were experimented with flow test and some
chemical analyses. Based on the sequential dissolution anal-
yses, the results showed that the chelant-based fluid did not
cause silica precipitation as HCI is absent. Furthermore, it
had increased the permeability of the core effectively. Garcia

et al. (2016) had revealed the advantages of aminopolycar-
boxylic acid (APCA) fluid that contained 1-1.5% of HF.
This fluid system is better than the conventional mud acid
that is inefficient to stimulate high-temperature sandstone
condition above 300 °F due to the precipitation of sodium
and potassium iron. The application of APCA/HF* blend
fluid system in offshore reservoirs was a success, resulting
in 30-50% barrel oil per day production improvement for
more than a period of 12 months.

Legemabh et al. (2015) proposed a two-step injection pro-
cess using chelating agents to treat high-temperature wells.
First, the author suggested injection of low-volume but high-
concentration APC, then followed by injection of high-vol-
ume but low-concentration APC such as GLDA. Mahmoud
et al. (2015) examined the carbonate removal compatibility
of GLDA, HEDTA and 15 wt% HCI using illitic sandstone
core at high temperature of 300 °F. The outcomes of the
core flooding experiment revealed that HCI is not compat-
ible to remove carbonates in illitic sandstone, but results in
reduced porosity and permeability, which damaged the sand-
stone matrix. On the other hand, both GLDA and HEDTA
demonstrated high efficiency in carbonate mineral removal.

Based on the earlier literature review, many experiments
using chelating agents were conducted and reported by past
researchers. These chelants could be applied to stimulate
high-temperature well. The efforts of these past studies,
focusing on the effectiveness of chelants at high-temperature
condition, were highly appreciated. It was proven that these
acid systems were suitable and reliable to gain extensively
wide application in real-field practice. However, it should
also be alerted that chelating agents are generally less suit-
able for clean homogeneous sandstones because of the silica
precipitation during acidizing. Therefore, they are more suit-
able for heterogeneous carbonates and clay-rich sandstones.
Another point of view that should be noticed is that chelants
are very costly products as compared to mud acid, retarded
acid and organic acids. Although chelating agents can reduce
the cost of corrosion inhibitor used, it is still important to
optimize the budget between the costly chelants and corro-
sion inhibitor. A summary of classification on the reviewed
experimental works using chelating agents is presented in
Table 9.

Retarded acids and organic acids

Addition of retarding agent into conventional mud acid
formed another study to solve the problem associated with
the reaction of acids and the clay minerals. According to
the investigation by Ji et al. (2014) and Ji et al. (2016), alu-
minum chloride, AICl; was added to conventional mud acid
to form retarded mud acid. It was also known as fines con-
trol acid, which is comprised of 15% HCl, 1.5% HF and 5%
AlCl;-6H,0. The experiment was carried out on Berea core
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samples at both 75 and 200 °F. Based on the solubility test
result, no AlF; precipitate was detected at both temperatures.
Aneto (2012) also conducted core flooding tests and com-
pared the use of retarded mud acid using AICl;. The result
showed a reduction in rate of reaction by the retarded acid,
allowing deeper acid penetration and better damage removal.

In the earlier years, organic acids such as acetic and
formic acid; and powdered acid such as sulfamic and chlo-
roacetic acid were developed by researchers (Farley et al.
1970; Wehunt et al. 1993; Shuchart and Gdanski 1996;
Shuchart 1997). For instance, Templeton et al. (1975) dis-
covered a new approach to retard the consumption rate
of HF acid using methyl formate to generate formic acid,
CH,;COOH. Then, HF is generated at a controllable rate by
adding ammonium fluoride, NH,F. In general, methyl for-
mate hydrolyzes slowly to produce HF. The reaction equa-
tions to form HF were described as follows:

Proposed a two-step injection process

It is highly effective for heterogeneous
using APC

Condition Remarks
APCA/HF* is suitable for clean
sandstone
and clay-rich sandstone

360 °F
350 °F

HCOOCH, + H,0 —  HCOOH + CH;0OH  (5)

HCOOH + NH,F —  NH,*+ HCOO™ + HF. (6)

Furthermore, Van Domelen and Jennings (1995)
applied the use of two organic acids, which are acetic acid
(CH;COOH) and formic acid (HCOOH), in stimulating
HTHP wells. Both of these organic acids have the favorable
properties in sandstone acidizing, included weak ionization
and slow reaction. Therefore, these acids cause less corro-
sion to the well equipment and allow longer reaction period.
The acid blend had been applied on Arun limestone forma-
tion in Indonesia with high temperature of 350 °F. The well
response and corrosion response reflected positively in both
technical and economic efficiencies of the acid blend used.

Roger et al. (1998) conducted core flooding on the sand-
stone core using different formulations of the acid, other
than the typical 10% HCI and 1.5% HF. It had been proven
that this conventional acid combination caused the formation
damage as indicated by 74% permeability reduction. Based
on the results, 10% citric acid blended with 1.5% HF was
determined to be the optimum acid combination. The pro-
duction enhancement of 7400 to 16,000 BOPD was observed
in five producing wells stimulated using the optimum acid
combination.

These organic acids are being further developed as shown
in many recent publications. For instance, experimental
investigation was conducted by Al-Harbi et al. (2012) using
various mixtures of organic—HF acid system in stimulat-
ing sandstone cores. The acid combinations included ace-
tic (CH;COOH)-HF, formic (HCOOH)-HF and citric
(CcHgO,)—HF. The authors study the precipitations that
occurred during the acid and rock reactions as well as the
factors affecting those precipitations. Based on the results,
the precipitate type and amount mainly depend on the pH
of solution, type of organic—-HF combination, and initial

Acid System
APCA/HF*
APCA
HCOOH
APC

Bandera sandstone (heterogeneous,

65% quartz)

Leopard sandstone (clean, 95%
Experimental Core flooding ICP-OES Indiana limestone

Rock Type
quartz)

Analysis
ICP
OES
CT-Scan

Experimental Core flow test XRD

Methodology Approach

Table 9 (continued)
Garcia et al. (2016)
Legemah et al. (2015)
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concentration of free fluoride (Al-Harbi et al. 2011). Apart
from that, F/Al ratio was found to be the main parameter that
is associated with the precipitation of aluminum fluoride.
The precipitation of aluminum fluoride occurred at a certain
point over the critical ratio.

Andotra (2014) evaluated the use of citric acid as a chelat-
ing agent and compared the result with conventional mud
acid of ratio 9:1. The optimum result was obtained when
1 wt% citric acid was added into the mud acid. However,
the author also mentioned the issue of much higher cost
induced by adding citric acid as compared to HCI and HF.
Furthermore, L-glutamic acid N, N-diacetic acid, Na-GLDA
were combined with HF and tested using Bandera and
Berea cores. The results reflected positively on the chela-
tion of iron (Fe), calcium (Ca) and magnesium (Mg) but
not aluminosilicates (Al,SiOs). Nevertheless, the advantages
of these chelating agents over HCI were provided such as
lower corrosion, not being sensitive to minerals, being sta-
ble at high temperature greater than 200 °F and also being
biodegradable.

Yang et al. (2012a) conducted another experiment using
a blend of HF-organic acids instead of mud acid to mitigate
the problems associated with mud acid. The authors ana-
lyzed the kinetic and products of reactions. The findings of
research showed that the type of minerals present in the core
plugs has an effect on the reactions (Yang et al. 2012b; Yang
2012). Moreover, Zhou and Nasr-El-Din (2013) studied the
efficiency of a single-stage sandstone—acid combination,
which is a blend of HF and phosphonic acid during sand-
stone acid stimulation at 300 °F high-temperature formation.
The authors also evaluated the performance of multiple-acid
system to remove carbonate minerals from a sandstone core
plug that included a low pH 3.8 GLDA, HEDTA and for-
mic acid, HCOOH. All the acid systems were observed to
increase the permeability of Berea sandstone core sample.
However, HCOOH is still more efficient than GLDA and
HEDTA in dissolving the carbonate minerals in Bandera
sandstone core samples.

Experiments were performed by Shafiq et al. (2013a) to
analyze the combination of acetic acid and hydrochloric acid
in pre-flush stage. The authors then compare the result with
the conventional use of only hydrochloric acid in that stage.
The use of acid combination 7.5% HCl+2.5% CH;COOH
resulted in 18.5% porosity enhancement. This proved that
the usability of this acid combination is much better to be
used as a pre-flush acid than the conventional 10% HCI,
which resulted in only 10.9% porosity change. At the same
time, this research also highlighted the importance of pre-
flush stage in matrix acidizing to dissolve the carbonates to
prevent precipitation during the main acid stage.

The research group in recent years led by Shafiq et al. pre-
sented multiple experimentations using various acid combi-
nations (Shafiq et al. 2013b, 2014; Shafiq and Shuker 2013;
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Shafiq et al. 2015; Shafiq and Ben Mahmud 2016). The acid
combinations tested by the authors included a mixture of
orthophosphoric (H;PO,) acid and HF; fluoroboric (HBF,)
acid and HCOOH; and HCOOH and HF. The methodology
applied was core saturation method, whereby the sandstone
core plugs are saturated with the mentioned acid combi-
nations. Multiple analyses were carried out to discuss the
change in porosity, permeability, mineralogy and strength
before and after the experiment. According to their findings,
the best acid combination is 3% HF:9% H,PO,. However,
all these acid combinations are suitable to be applied as the
main acid during sandstone acid stimulation. With 135.32%
increase in permeability, this acid combination is even more
superior to the standard mud acid (3% HF:12% HCI), show-
ing lower increase in permeability, which is 101.76%. There-
fore, it was proven that varying the acid combination would
result in different outcomes, either in major or minor dispar-
ity. However, it should be noted that most of the experimen-
tations were conducted only at ambient or room temperature
conditions, which could not represent the real-field environ-
ment. Hence, this left a research gap that can be bridged in
the future studies.

In addition, a study on the phosphonic-based HF acid
system was reported by Zhou and Nasr-EI-Din (2016) as an
alternate solution to mud acid. The author investigated sev-
eral parameters affecting the interactions between the new
acid systems with the clay minerals such as the concentra-
tion of acid, the reaction time and temperature. As shown
in the result, phosphonic-based HF acid system resulted in
significantly higher enhancement of permeability than mud
acid and that was 177.86% at 300 °F. A summarized clas-
sification of the reviewed experimental works using retarded
and organic acids is interpreted in Table 10.

Overall characterization and comparison
of different acids

Table 11 shows the positive and cautionary indication of
each of the acids reviewed based on the aspects of their fea-
sibility, reaction mechanism as well as cost, health, safety
and environmental impact.

Summary of review and outlook

To sum up the whole literature review, there are numerous
acids that had been developed in the past years, aiming to
continuously improve the permeability enhancement result,
while preventing precipitation. In this study, a detailed eval-
uation of all these acids are presented as shown in Table 11.
Generally, four groups of acids are identified, which include
the mud acid (HF), fluoroboric acid (HBF,), chelating
agents, retarded and organic acids.
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Mud acid is very suitable to stimulate unconsolidated
sandstone at low to moderate temperature. It had been com-
monly applied in sandstone acidizing and had successfully
enhanced the porosity and permeability of sandstone forma-
tion with quartz mineral content. However, mud acid is not
recommended to be used at high-temperature conditions due
to rapid rate of reaction with the sandstone mineral, resulting
in early acid consumption. Mud acid is also very hazardous
and corrosive to the well equipment.

On the other hand, HBF, is an alternative acid to mud
acid at moderate-temperature condition. It is also suitable
for unconsolidated sandstone with quartz mineral. However,
due to its slow hydrolysis reaction to produce HF, HBF,
acidizing would result in deeper penetration rate into the
sandstone formation. HBF, is also reported to be effective in
fines control, clay stabilization and damage removal. Never-
theless, the literature lacks study on the application of HBF,
at elevated temperature conditions, which is worth further
investigation.

Furthermore, chelating agents are effective for heteroge-
neous carbonate or clay-rich sandstone at very high tempera-
tures. Chelating agents can prevent iron oxide precipitation
and is less corrosive. However, it is not recommended for
homogeneous clean sandstone because of silica precipi-
tation, which would lower the porosity and permeability.
Therefore, the suitability of chelating agents would signifi-
cantly depend on the mineral contents of the sandstone or
carbonates. Finally, the retarded and organic acids are suit-
able for carbonates or sandstone with high clay content. It
is not effective for dissolving quartz content because it lacks
of fluoride ions. It also causes some precipitation at high-
temperature conditions. Table 12 provides a clear view on
the suitable acids for sandstone with high and low quartz
content.

Optimization of HF and HBF, Sandstone acidizing

In general, the procedures of experiment and results from
these literature studies have provided an important insight
and some constructive outlooks for the experimental work or
simulation design and setup that are worth technical investi-
gation in the future. As highlighted by Shafiq and Mahmud
(2017), the future of matrix acidizing should focus on solv-
ing the problems associated with high temperature. New acid
combinations developed are expected to not only improve
the permeability, but also reduce the precipitation effect.
From a larger perspective, it is clear that there are many
different acids that can be technically used in sandstone
stimulation besides the mud acid, which is a conventional
option and has already been widely applied. These acids that
had been used and tested included chelating agents, retarded
and organic acid combinations as well as fluoroboric acid.
Among all the acids tested by previous researchers, HBF,

Table 12 Alternatives acids for high- and low-quartz content sand-
stone

Mineral content Suitable acid

Mud acid
HF:HCI
Fluoroboric acid
HBF,

Chelating agents
HACA

GLDA

EDTA
HEDTA

NTA
EGD/HEIDA
HTDP

APCA

APC

Organic acids
HCOOH
CH;COOH
CeHgO,
Retarded acids
H,;PO,

High quartz content

Low quartz content

could be further experimented based upon the research
conducted by Shafiq and Ben Mahmud (2016) at the higher
temperatures of 60, 80 and 100 °C. Then, the results could
be compared with mud acid under the same temperature
conditions.

In view of the shortcoming of the mud acid at high tem-
peratures, HBF, is foreseen as a better selection in contrast.
It is expected to not only improve the porosity and perme-
ability, but also eliminate the previously existing problems
as it is less corrosive, stable and allowing deeper penetra-
tion due to slow hydrolysis rate. Nevertheless, the limita-
tion of retardation effect of HBF, remains unknown without
detailed optimization approach. More studies are deserved
to consolidate the claimed advantages of HBF, over the mud
acid. The key and major parameter affecting the acid stimu-
lation results of HF and HBF, must be optimized, along with
other parameters such as acid concentration and injection
rate.

Proposed experimental work for the future

Based on the experimental setup of core flooding test as
described in the user manual (Sanchez 2016) and procedure
described by Nevito Gomez (2006), the steps that are sug-
gested to be adopted to conduct the experimental work in the
future are listed as follows. Figure 10 shows the schematic
diagram of core flooding test setup schematic diagram.

1. The core flooding apparatus will be set up and cali-
brated.

pisllase ol ay .
e e O) Springer
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The pre-flush, main acid and after-flush acid solutions
will be prepared.

The initial porosity and permeability will be measured
using porosity—permeability (Poro-Perm) apparatus
(Shafig and Ben Mahmud 2016), and the mineralogy
will be measured using field emission scanning elec-
tron microscope (FESEM) (Shafiq and Ben Mahmud
2016).

The core sample will be exposed to brine solution for
2 h before using core flooding experiment at high oper-
ating conditions and a constant flow rate.

The pressure variation will be measured during acidiz-
ing process and will be turned off when pressure
becomes constant.

The final sample porosity, permeability and mineralogy
will be measured.

The reacted acid will be collected and examined for
various ions, such as calcium (Ca), magnesium (Mg),
iron (Fe), silicon (Si) and aluminum (Al) in solution
using inductively coupled plasma (ICP).

The data will be collected to study the reaction kinet-
ics and products using F-nuclear magnetic resonance
(F-NMR) spectroscopy.

The core sample will be scanned using computerized
tomography (CT) scan before and after core flooding
test to examine depth of acid penetration.

The above steps will be repeated for different tempera-
tures of 60, 80 and 100 °C.

The above steps will be repeated for HBF, and conven-
tional mud acid (HF) and the results will be compared.

Springer
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12. Collected data will be used to analyze the reaction

m

echanism.

Proposed experimental data collection and analyses

There are a number of experimental tests and analyses that

can be

performed in the future to characterize the effec-

tiveness of HF and HBF, under various conditions, which

include

Poro-Perm test

The porosity and permeability of the eight core sam-
ples will be measured before and after conducting
the core flooding test.

The initial and final porosities and permeability of
the eight core samples will be recorded.

Then, the improved porosity and permeability ratio
(IMPR) will be calculated.

It is the ratio of the final porosity and permeability
to the initial porosity and permeability (Shafiq et al.
2015; Shafiq and Ben Mahmud 2016).

FESEM test

The mineralogy of the core sample will be identified
before and after conducting the core flooding test to
investigate the presence of different minerals in it.
FESEM is versatile and non-destructive.
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— The mineralogy change provides indication for
the reaction of minerals with the acid combination
(Shafiq and Ben Mahmud 2016).

e ICP analysis

— ICP will be used to measure the concentration of
cations present in the injected acid system.

— The ions being analyzed are Ca, Mg, Fe, Si and Al
(Nasr-El-Din et al. 2013; Abdelmoneim and Nasr-
El-Din 2015).

e F-NMR analysis

— "YF-NMR will be used to investigate the reaction
between clay minerals and the acid combination
system.

— Itis used in the detection of the chemical species in
solution.

— F-NMR also determines the fluoride distribution in
the chemical species present in the spent acid, hence
provides information for the reaction kinetics and
products (Ji et al. 2014).

e (T scan analysis

— CT scan will be used to investigate the extent of the
acid penetration into the core sample.

— Before the core flooding treatment, the CT scan will
show no channels or vugs in the core.

— However, acid penetration channels or wormholes
are expected to be observed after core flooding.

— It will provide information on the wormhole propa-
gation pattern in the core sample (Sayed and Nasr-
El-Din 2013).

Significance of future research

The future research will generate a new knowledge on reser-
voir stimulation technique, in the aspect of sandstone matrix
acidizing using different acid combinations, which are HF
and HBF, in particular. It is intended to determine the opti-
mum conditions for both HF and HBF, to show a significant
improvement in enhancing the porosity and permeability of
a low-permeable sandstone formation reservoir at high tem-
peratures. Moreover, it is also crucial to provide information
about the effects of acid concentration, injection rate and
the temperature of reservoir formation on acid penetration.
Therefore, this research would be able to make a significant
breakthrough in the oil and gas industry by diversifying the
acid choice and concentration to optimize the sandstone
matrix acidizing process at elevated temperatures.

Concluding remarks

In the past years, mud acid was highly acknowledged due
to its efficiency in enhancing the porosity and permeabil-
ity of sandstone matrix. This is because HF is unique and
is the only acid that can dissolve silica minerals present
in sandstone, whereas HCI is proven to be able to con-
trol precipitation during acidizing. However, rapid rate of
reaction occurs and results in early consumption of acid
when the well temperature increases to higher than 200 °F.
This makes mud acid a drawback as it decreased the effi-
ciency of acidizing. Mud acid is also highly corrosive and
hazardous.

So, fluoroboric acid (HBF,) is being proposed in the
scope of future work. Numerous advantages were observed
in HBF, when compared to the mud acid. It causes greater
increase in the permeability, less reduction in the mechani-
cal strength of core plugs and has also significantly lower
corrosiveness. HBF, is more beneficial than conventional
mud acid due to its retardation effect. However, there is no
innovative discovery of the limitation of this retardation
effect. Although HBF, has a slow hydrolysis process to
form HF, its retardation effect is a function of temperature.
This means that as the temperature increases, the retarda-
tion effect of HBF, will be reduced until it reaches an
optimum point of temperature. Hence, the persistence of
HBF, at high temperatures deserves detailed investigation
in future to provide a more precise and reliable recommen-
dation of acid choice between HF and HBF,.

Additionally, it is also important to evaluate other
parameters during sandstone acidizing process, which
will possibly affect the success rate of an acid stimulation
operation such as the injection rate and acid concentra-
tion. By integrating the effects of temperature with these
parameters, an optimization approach can be conducted.
By comparing the effects of these parameters on HBF, and
HF, respectively, a clear understanding of suitable acid
choice and treatment design at various conditions can be
obtained. This is also crucial to ensure that the claimed
benefits of HBF, over conventional mud acid can be uti-
lized effectively, without causing any negative stimulation
performance.

In conclusion, it is recommended in the future that these
two acids can be compared extensively by incorporating
various governing parameters. Both HF and HBF, are also
proposed to be investigated using core flooding apparatus
at higher temperatures of 60, 80 and 100 °C for compari-
son. Various analyses such as Poro-Perm, FESEM, CT
scan, ICP and '°F NMR as discussed in previous section
can be carried out to test the efficiency of HF and HBF,,
respectively.
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