884 research outputs found

    Biomarkers and in vitro strategies for nephrotoxicity and renal disease assessment

    Get PDF
    Acute kidney injury (AKI) is a global public health concern, impacting nearly 13.3 million patients and resulting in three million deaths per year. Chronic kidney disease has increased by 135% since 1990, representing the pathology with the fastest growth rate worldwide. The annual costs of dialysis and kidney transplants range between US35,000andUS35,000 and US100,000 per patient. Despite its great impact, kidney disease has remained mostly asymptomatic for many years. AKI continues to be a major, unmet medical condition for which there are no pharmacological treatments available, while animal models are limited to provide direction for therapeutic translation into humans. Currently, serum creatinine is the standard biomarker to identify nephrotoxicity; however, it is a late stage biomarker. Hence, there is a pressing need to study in vitro biomarkers for the assessment of nephrotoxicity in order to develop new and safer drugs. Understanding of the mechanisms by which molecules produce nephrotoxicity is vital in order to both prevent adversity and treat kidney injury. In this review, we address new technologies and models that may be used to identify earlier biomarkers and pathways involved in nephrotoxicity, such as cell culture, omics, bioinformatics platform, CRISPR/Cas9 genome-editing, in silico, organoids and 3D bioprinting, considering AOP

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]

    A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European Randomized Study of Prostate Cancer screening, France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that a panel of kallikrein markers - total prostate-specific antigen (PSA), free PSA, intact PSA and human kallikrein-related peptidase 2 (hK2) - can predict the outcome of prostate biopsy in men with elevated PSA. Here we investigate the properties of our panel in men subject to clinical work-up before biopsy.</p> <p>Methods</p> <p>We applied a previously published predictive model based on the kallikrein panel to 262 men undergoing prostate biopsy following an elevated PSA (≥ 3 ng/ml) and further clinical work-up during the European Randomized Study of Prostate Cancer screening, France. The predictive accuracy of the model was compared to a "base" model of PSA, age and digital rectal exam (DRE).</p> <p>Results</p> <p>83 (32%) men had prostate cancer on biopsy of whom 45 (54%) had high grade disease (Gleason score 7 or higher). Our model had significantly higher accuracy than the base model in predicting cancer (area-under-the-curve [AUC] improved from 0.63 to 0.78) or high-grade cancer (AUC increased from 0.77 to 0.87). Using a decision rule to biopsy those with a 20% or higher risk of cancer from the model would reduce the number of biopsies by nearly half. For every 1000 men with elevated PSA and clinical indication for biopsy, the model would recommend against biopsy in 61 men with cancer, the majority (≈80%) of whom would have low stage <it>and </it>low grade disease at diagnosis.</p> <p>Conclusions</p> <p>In this independent validation study, the model was highly predictive of prostate cancer in men for whom the decision to biopsy is based on both elevated PSA and clinical work-up. Use of this model would reduce a large number of biopsies while missing few cancers.</p

    Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their revaluation

    Get PDF
    The threshold of toxicological concern (TTC) approach is a resource-effective de minimismethod for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritise substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenicmode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicityand that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application

    Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings

    Get PDF
    BACKGROUND: One of the most challenging problems in tissue engineering is the establishment of vascular supply. A possible approach might be the engineering of microvasculature in vitro and the supply by engineered feeder vessels. METHODS: An in vitro model for a small-diameter vessel was developed and made from adipose tissue stromal cells and human umbilical vein endothelial cells in a tube-like gelatine scaffold. The number of "branches" emerging from the central lumen and the morphology of the central lumen of the vessel equivalent were assessed after 16 days of either pulsatile perfusion culture or culture in rotating containers by evaluation of immunohistochemically stained sections (n = 6 pairs of cultures). Intramural capillary network formation was demonstrated in five experiments with confocal laser scanning microscopy. RESULTS: Perfused specimens showed a round or oval lumen lined by a single layer of endothelial cells, whereas following rotation culture the lumen tended to collapse. Confocal laser scanning microscopy showed more extended network formation in perfused specimens as compared to specimens after rotation culture. Partially highly interconected capillary-like networks were imaged which showed orientation around the central lumen. Perfused specimens exhibited significantly more branches emerging from the central lumen. There were, however, hardly any capillary branches crossing the whole vessel wall. CONCLUSION: Pulsatile perfusion supports the development of vascular networks with physiological appearance. Advances in reactor development, acquisition of functional data and imaging procedures are however necessary in order to attain the ultimate goal of a fully functional engineered supplying vessel

    Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine

    Get PDF
    Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3&gt;2.1×10-12¿¿s/eV at 90% C.L

    German translation and external validation of the Radboud Skills Questionnaire in patients suffering from Complex Regional Pain Syndrome 1

    Get PDF
    BACKGROUND: Patients suffering from Complex Regional Pain Syndrome commonly complain of substantial limitations in their activities of daily living. The Radboud Skills Questionnaire measures alterations in the level of disability of patients with Complex Regional Pain Syndrome, but this instrument is currently not available in German. The goals of our study were to translate the Dutch Radboud Skills Questionnaire into German and to assess its external criterion validity with the German version of the Disabilities of the Arm, Shoulder and Hand Questionnaire. METHODS: We translated the Radboud Skills Questionnaire according to published guidelines. Demographic data and validity were assessed in 57 consecutive patients with Complex Regional Pain Syndrome 1 of the upper extremity. Information on age, duration of symptoms, type of Complex Regional Pain Syndrome 1 and type of initiating event was obtained. We assessed the external criterion validity by comparing the German Radboud Skills Questionnaire and the German Disabilities of the Arm, Shoulder and Hand Questionnaire and calculated the prediction intervals. RESULTS: Score values ranged from 55.4 +/- 22.0 for the Disabilities of the Arm, Shoulder and Hand Questionnaire score and 140.1 +/- 39.2 for the Radboud Skills Questionnaire. We found a high correlation between the Radboud Skills Questionnaire and the Disabilities of the Arm, Shoulder and Hand Questionnaire (R2 = 0.83). CONCLUSION: This validation of the Radboud Skills Questionnaire demonstrates that this German version is a simple and accurate instrument to assess and quantify disabilities of patients suffering from Complex Regional Pain Syndrome 1 of the upper extremity for clinical and research purposes

    Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium

    Get PDF
    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity
    • …
    corecore