962 research outputs found
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years' follow up
<b>Background</b>
High cholesterol may be a modifiable risk factor for prostate cancer but results have been inconsistent and subject to potential "reverse causality" where undetected disease modifies cholesterol prior to diagnosis.<p></p>
<b>Methods</b>
We conducted a prospective cohort study of 12,926 men who were enrolled in the Midspan studies between 1970 and 1976 and followed up to 31st December 2007. We used Cox-Proportional Hazards Models to evaluate the association between baseline plasma cholesterol and Gleason grade-specific prostate cancer incidence. We excluded cancers detected within at least 5 years of cholesterol assay.<p></p>
<b>Results</b>
650 men developed prostate cancer in up to 37 years' follow-up. Baseline plasma cholesterol was positively associated with hazard of high grade (Gleason score[greater than or equal to]8) prostate cancer incidence (n=119). The association was greatest among men in the 4th highest quintile for cholesterol, 6.1 to <6.69 mmol/l, Hazard Ratio 2.28, 95% CI 1.27 to 4.10, compared with the baseline of <5.05 mmol/l. This association remained significant after adjustment for body mass index, smoking and socioeconomic status.<p></p>
<b>Conclusions</b>
Men with higher cholesterol are at greater risk of developing high-grade prostate cancer but not overall risk of prostate cancer. Interventions to minimise metabolic risk factors may have a role in reducing incidence of aggressive prostate cancer
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
Recommended from our members
The convective storm initiation project
Copyright @ 2007 AMSThe Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawin-sondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.This work is funded by the National Environment Research Council following an initial award from the HEFCE Joint Infrastructure Fund
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Rapid haplotype inference for nuclear families
Hapi is a new dynamic programming algorithm that ignores uninformative states and state transitions in order to efficiently compute minimum-recombinant and maximum likelihood haplotypes. When applied to a dataset containing 103 families, Hapi performs 3.8 and 320 times faster than state-of-the-art algorithms. Because Hapi infers both minimum-recombinant and maximum likelihood haplotypes and applies to related individuals, the haplotypes it infers are highly accurate over extended genomic distances.National Institutes of Health (U.S.) (NIH grant 5-T90-DK070069)National Institutes of Health (U.S.) (Grant 5-P01-NS055923)National Science Foundation (U.S.) (Graduate Research Fellowship
The relationship between smoking and quality of life in advanced lung cancer patients: a prospective longitudinal study.
PURPOSE: Smoking is a major cause of lung cancer, and continued smoking may compromise treatment efficacy and quality of life (health-related quality of life (HRQoL)) in patients with advanced lung cancer. Our aims were to determine (i) preference for treatments which promote quality over length of life depending on smoking status, (ii) the relationship between HRQoL and smoking status at diagnosis (T1), after controlling for demographic and clinical variables, and (iii) changes in HRQoL 6 months after diagnosis (T2) depending on smoking status. METHODS: Two hundred ninety-six patients with advanced lung cancer were given questionnaires to assess HRQoL (EORTC QLQ-C30), time-trade-off for life quality versus quantity (QQQ) and smoking history (current, former or never smoker) at diagnosis (T1) and 6 months later (T2). Medical data were extracted from case records. RESULTS: Questionnaires were returned by 202 (68.2 %) patients at T1 and 114 (53.3 %) at T2. Patients favoured treatments that would enhance quality of life over increased longevity. Those who continued smoking after diagnosis reported worse HRQoL than former smokers or those who never smoked. Smoking status was a significant independent predictor of coughing in T1 (worse in smokers) and cognitive functioning in T2 (better in never smokers). CONCLUSIONS: Smoking by patients with advanced lung cancer is associated with worse symptoms on diagnosis and poorer HRQoL for those who continue smoking. The results have implications to help staff explain the consequences of smoking to patients
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder
Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD
Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status.
BACKGROUND: The Body Mass Index (BMI) and Waist Circumference (WC) are well-used anthropometric predictors for cardiovascular diseases (CVD), but their validity is regularly questioned. Recently, A Body Shape Index (ABSI) and Body Roundness Index (BRI) were introduced as alternative anthropometric indices that may better reflect health status. OBJECTIVE: This study assessed the capacity of ABSI and BRI in identifying cardiovascular diseases and cardiovascular disease risk factors and determined whether they are superior to BMI and WC. DESIGN AND METHODS: 4627 Participants (54±12 years) of the Nijmegen Exercise Study completed an online questionnaire concerning CVD health status (defined as history of CVD or CVD risk factors) and anthropometric characteristics. Quintiles of ABSI, BRI, BMI, and WC were used regarding CVD prevalence. Odds ratios (OR), adjusted for age, sex, and smoking, were calculated per anthropometric index. RESULTS: 1332 participants (27.7%) reported presence of CVD or CVD risk factors. The prevalence of CVD increased across quintiles for BMI, ABSI, BRI, and WC. Comparing the lowest with the highest quintile, adjusted OR (95% CI) for CVD were significantly different for BRI 3.2 (1.4-7.2), BMI 2.4 (1.9-3.1), and WC 3.0 (1.6-5.6). The adjusted OR (95% CI) for CVD risk factors was for BRI 2.5 (2.0-3.3), BMI 3.3 (1.6-6.8), and WC 2.0 (1.6-2.5). No association was observed for ABSI in both groups. CONCLUSIONS: BRI, BMI, and WC are able to determine CVD presence, while ABSI is not capable. Nevertheless, the capacity of BRI as a novel body index to identify CVD was not superior compared to established anthropometric indices like BMI and WC
- …
