214 research outputs found

    Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Get PDF
    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as ‘transition state analogue’ inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs

    Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait

    Get PDF
    The genetic control of common traits is rarely deterministic, with many genes contributing only to the chance of developing a given phenotype. This incomplete penetrance is poorly understood and is usually attributed to interactions between genes or interactions between genes and environmental conditions. Because many traits such as cancer can emerge from rare events happening in one or very few cells, we speculate an alternative and complementary possibility where some genotypes could facilitate these events by increasing stochastic cell-to-cell variations (or ‘noise’). As a very first step towards investigating this possibility, we studied how natural genetic variation influences the level of noise in the expression of a single gene using the yeast S. cerevisiae as a model system. Reproducible differences in noise were observed between divergent genetic backgrounds. We found that noise was highly heritable and placed under a complex genetic control. Scanning the genome, we mapped three Quantitative Trait Loci (QTL) of noise, one locus being explained by an increase in noise when transcriptional elongation was impaired. Our results suggest that the level of stochasticity in particular molecular regulations may differ between multicellular individuals depending on their genotypic background. The complex genetic architecture of noise buffering couples genetic to non-genetic robustness and provides a molecular basis to the probabilistic nature of complex traits

    Learning a Prior on Regulatory Potential from eQTL Data

    Get PDF
    Genome-wide RNA expression data provide a detailed view of an organism's biological state; hence, a dataset measuring expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish true causal polymorphisms from the large number of possibilities. The problem is particularly challenging in populations with significant linkage disequilibrium, where traits are often linked to large chromosomal regions containing many genes. Here, we present a novel method, Lirnet, that automatically learns a regulatory potential for each sequence polymorphism, estimating how likely it is to have a significant effect on gene expression. This regulatory potential is defined in terms of “regulatory features”—including the function of the gene and the conservation, type, and position of genetic polymorphisms—that are available for any organism. The extent to which the different features influence the regulatory potential is learned automatically, making Lirnet readily applicable to different datasets, organisms, and feature sets. We apply Lirnet both to the human HapMap eQTL dataset and to a yeast eQTL dataset and provide statistical and biological results demonstrating that Lirnet produces significantly better regulatory programs than other recent approaches. We demonstrate in the yeast data that Lirnet can correctly suggest a specific causal sequence variation within a large, linked chromosomal region. In one example, Lirnet uncovered a novel, experimentally validated connection between Puf3—a sequence-specific RNA binding protein—and P-bodies—cytoplasmic structures that regulate translation and RNA stability—as well as the particular causative polymorphism, a SNP in Mkt1, that induces the variation in the pathway

    Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria

    Get PDF
    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells

    Does the Reading of Different Orthographies Produce Distinct Brain Activity Patterns? An ERP Study

    Get PDF
    Orthographies vary in the degree of transparency of spelling-sound correspondence. These range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Only a few studies have examined whether orthographic depth is reflected in brain activity. In these studies a between-language design was applied, making it difficult to isolate the aspect of orthographic depth. In the present work this question was examined using a within-subject-and-language investigation. The participants were speakers of Hebrew, as they are skilled in reading two forms of script transcribing the same oral language. One form is the shallow pointed script (with diacritics), and the other is the deep unpointed script (without diacritics). Event-related potentials (ERPs) were recorded while skilled readers carried out a lexical decision task in the two forms of script. A visual non-orthographic task controlled for the visual difference between the scripts (resulting from the addition of diacritics to the pointed script only). At an early visual-perceptual stage of processing (∼165 ms after target onset), the pointed script evoked larger amplitudes with longer latencies than the unpointed script at occipital-temporal sites. However, these effects were not restricted to orthographic processing, and may therefore have reflected, at least in part, the visual load imposed by the diacritics. Nevertheless, the results implied that distinct orthographic processing may have also contributed to these effects. At later stages (∼340 ms after target onset) the unpointed script elicited larger amplitudes than the pointed one with earlier latencies. As this latency has been linked to orthographic-linguistic processing and to the classification of stimuli, it is suggested that these differences are associated with distinct lexical processing of a shallow and a deep orthography

    Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates

    Get PDF
    Interactions between an organism and its environment can significantly influence phenotypic evolution. A first step toward understanding this process is to characterize phenotypic diversity within and between populations. We explored the phenotypic variation in stress sensitivity and genomic expression in a large panel of Saccharomyces strains collected from diverse environments. We measured the sensitivity of 52 strains to 14 environmental conditions, compared genomic expression in 18 strains, and identified gene copy-number variations in six of these isolates. Our results demonstrate a large degree of phenotypic variation in stress sensitivity and gene expression. Analysis of these datasets reveals relationships between strains from similar niches, suggests common and unique features of yeast habitats, and implicates genes whose variable expression is linked to stress resistance. Using a simple metric to suggest cases of selection, we found that strains collected from oak exudates are phenotypically more similar than expected based on their genetic diversity, while sake and vineyard isolates display more diverse phenotypes than expected under a neutral model. We also show that the laboratory strain S288c is phenotypically distinct from all of the other strains studied here, in terms of stress sensitivity, gene expression, Ty copy number, mitochondrial content, and gene-dosage control. These results highlight the value of understanding the genetic basis of phenotypic variation and raise caution about using laboratory strains for comparative genomics

    Replication and Explorations of High-Order Epistasis Using a Large Advanced Intercross Line Pedigree

    Get PDF
    Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait

    Genomic Analysis of QTLs and Genes Altering Natural Variation in Stochastic Noise

    Get PDF
    Quantitative genetic analysis has long been used to study how natural variation of genotype can influence an organism's phenotype. While most studies have focused on genetic determinants of phenotypic average, it is rapidly becoming understood that stochastic noise is genetically determined. However, it is not known how many traits display genetic control of stochastic noise nor how broadly these stochastic loci are distributed within the genome. Understanding these questions is critical to our understanding of quantitative traits and how they relate to the underlying causal loci, especially since stochastic noise may be directly influenced by underlying changes in the wiring of regulatory networks. We identified QTLs controlling natural variation in stochastic noise of glucosinolates, plant defense metabolites, as well as QTLs for stochastic noise of related transcripts. These loci included stochastic noise QTLs unique for either transcript or metabolite variation. Validation of these loci showed that genetic polymorphism within the regulatory network alters stochastic noise independent of effects on corresponding average levels. We examined this phenomenon more globally, using transcriptomic datasets, and found that the Arabidopsis transcriptome exhibits significant, heritable differences in stochastic noise. Further analysis allowed us to identify QTLs that control genomic stochastic noise. Some genomic QTL were in common with those altering average transcript abundance, while others were unique to stochastic noise. Using a single isogenic population, we confirmed that natural variation at ELF3 alters stochastic noise in the circadian clock and metabolism. Since polymorphisms controlling stochastic noise in genomic phenotypes exist within wild germplasm for naturally selected phenotypes, this suggests that analysis of Arabidopsis evolution should account for genetic control of stochastic variance and average phenotypes. It remains to be determined if natural genetic variation controlling stochasticity is equally distributed across the genomes of other multi-cellular eukaryotes

    Differential Allelic Expression in the Human Genome: A Robust Approach To Identify Genetic and Epigenetic Cis-Acting Mechanisms Regulating Gene Expression

    Get PDF
    The recent development of whole genome association studies has lead to the robust identification of several loci involved in different common human diseases. Interestingly, some of the strongest signals of association observed in these studies arise from non-coding regions located in very large introns or far away from any annotated genes, raising the possibility that these regions are involved in the etiology of the disease through some unidentified regulatory mechanisms. These findings highlight the importance of better understanding the mechanisms leading to inter-individual differences in gene expression in humans. Most of the existing approaches developed to identify common regulatory polymorphisms are based on linkage/association mapping of gene expression to genotypes. However, these methods have some limitations, notably their cost and the requirement of extensive genotyping information from all the individuals studied which limits their applications to a specific cohort or tissue. Here we describe a robust and high-throughput method to directly measure differences in allelic expression for a large number of genes using the Illumina Allele-Specific Expression BeadArray platform and quantitative sequencing of RT-PCR products. We show that this approach allows reliable identification of differences in the relative expression of the two alleles larger than 1.5-fold (i.e., deviations of the allelic ratio larger than 60∶40) and offers several advantages over the mapping of total gene expression, particularly for studying humans or outbred populations. Our analysis of more than 80 individuals for 2,968 SNPs located in 1,380 genes confirms that differential allelic expression is a widespread phenomenon affecting the expression of 20% of human genes and shows that our method successfully captures expression differences resulting from both genetic and epigenetic cis-acting mechanisms
    corecore