21 research outputs found
The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation
Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
Microsecond Time-Resolved Absorption Spectroscopy Used to Study CO Compounds of Cytochrome bd from Escherichia coli
Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic
species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We
examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in oneelectron
reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm
excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast
(t,1.5 ms) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the
electron migrates to heme b558 (t,16 ms). It returns from the b-hemes to heme d with t,180 ms. Unlike cytochrome bd in
the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is
small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an
internal ligand (L) at the opposite side of the heme. CO recombines with heme d (t,16 ms) yielding a transient
hexacoordinate state (CO-Fe2+
-L). Then the ligand slowly (t,30 ms) dissociates from heme d. Recombination of CO with a
reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to
heme d (t,20 ms), some heme b558 (t,0.2–3 ms), and finally migrates from heme d to heme b595 (t,24 ms) in ,5% of the
enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the
membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in
excitation and other experimental conditions
