136 research outputs found

    Cissus Sicyoides: Pharmacological Mechanisms Involved In The Anti-inflammatory And Antidiarrheal Activities

    Get PDF
    The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS). The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA) and prostaglandin E2 (PGE2). The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α2 adrenergic receptor, muscarinic receptor, nitric oxide (NO) and PGE2. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE2. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE2. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE2. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smoothmuscle and/or intestinal transit. © 2016 by the authors; licensee MDPI, Basel, Switzerland.17

    Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes

    Get PDF
    The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM

    Resonance- and Chaos-Assisted Tunneling

    Full text link
    We consider dynamical tunneling between two symmetry-related regular islands that are separated in phase space by a chaotic sea. Such tunneling processes are dominantly governed by nonlinear resonances, which induce a coupling mechanism between ``regular'' quantum states within and ``chaotic'' states outside the islands. By means of a random matrix ansatz for the chaotic part of the Hamiltonian, one can show that the corresponding coupling matrix element directly determines the level splitting between the symmetric and the antisymmetric eigenstates of the pair of islands. We show in detail how this matrix element can be expressed in terms of elementary classical quantities that are associated with the resonance. The validity of this theory is demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure
    • …
    corecore