20,340 research outputs found

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Convergence of the Crank-Nicolson-Galerkin finite element method for a class of nonlocal parabolic systems with moving boundaries

    Get PDF
    The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite elements methods are investigated

    Experimental quantum computing without entanglement

    Get PDF
    Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to offer any speed up over a classical computer. However, deterministic quantum computation with one pure qubit (DQC1), which employs noisy (mixed) states, is an efficient model that generates at most a marginal amount of entanglement. Although this model cannot implement any arbitrary algorithm it can efficiently solve a range of problems of significant importance to the scientific community. Here we experimentally implement a first-order case of a key DQC1 algorithm and explicitly characterise the non-classical correlations generated. Our results show that while there is no entanglement the algorithm does give rise to other non-classical correlations, which we quantify using the quantum discord - a stronger measure of non-classical correlations that includes entanglement as a subset. Our results suggest that discord could replace entanglement as a necessary resource for a quantum computational speed-up. Furthermore, DQC1 is far less resource intensive than universal quantum computing and our implementation in a scalable architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure

    Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3

    Full text link
    We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition close to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table

    Microbiological analysis of Portugal northern coastal beach sands

    Get PDF
    Poster apresentado no XIV Congresso Nacional de Bioquímica, Vilamoura, Portugal, 2004

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure

    The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

    Get PDF
    For two given ω\omega-terms α\alpha and β\beta, the word problem for ω\omega-terms over a variety V\boldsymbol{\mathrm{V}} asks whether α=β\alpha=\beta in all monoids in V\boldsymbol{\mathrm{V}}. We show that the word problem for ω\omega-terms over each level of the Trotter-Weil Hierarchy is decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy, our approach yields an algorithm in nondeterministic logarithmic space (NL). In addition, we provide deterministic polynomial time algorithms which are more efficient than straightforward translations of the NL-algorithms. As an application of our results, we show that separability by the so-called corners of the Trotter-Weil Hierarchy is witnessed by ω\omega-terms (this property is also known as ω\omega-reducibility). In particular, the separation problem for the corners of the Trotter-Weil Hierarchy is decidable

    Periodic orbit bifurcations and scattering time delay fluctuations

    Full text link
    We study fluctuations of the Wigner time delay for open (scattering) systems which exhibit mixed dynamics in the classical limit. It is shown that in the semiclassical limit the time delay fluctuations have a distribution that differs markedly from those which describe fully chaotic (or strongly disordered) systems: their moments have a power law dependence on a semiclassical parameter, with exponents that are rational fractions. These exponents are obtained from bifurcating periodic orbits trapped in the system. They are universal in situations where sufficiently long orbits contribute. We illustrate the influence of bifurcations on the time delay numerically using an open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200
    corecore