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Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation
that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a
large amount of entanglement. Instead it has been proposed that other nonclassical correlations are
responsible for the computational speedup, and that these can be captured by the quantum discord. In this
Letter we implement DQCT1 in an all-optical architecture, and experimentally observe the generated
correlations. We find no entanglement, but large amounts of quantum discord—except in three cases
where an efficient classical simulation is always possible. Our results show that even fully separable,
highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a
valuable resource for quantum information technologies.
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While a great deal of work has been done on the con-
ventional pure-state models of quantum computing [1,2],
relatively little is known about computing with mixed
states. Deterministic quantum computation with one pure
qubit (DQC1) is a model of computation that employs only
a single qubit in a pure state, alongside a register of qubits
in the fully mixed state [3]. While this model is not
universal—it cannot implement any arbitrary algorithm—
it can still efficiently solve important problems that are
thought to be classically intractable. One of the original
applications identified was the simulation of quantum sys-
tems [3]. Since then exponential speedups have been iden-
tified in estimating the average fidelity decay under
quantum maps [4], quadratically signed weight enumera-
tors [5], and the Jones Polynomial in knot theory [6].
DQCI1 also affords efficient parameter estimation at the
quantum metrology limit [7]. That such a useful tool could
be built with only a single pure quantum bit is particularly
appealing given the current state of experimental quantum
computing, where decoherence is a significant obstacle in
the path to large-scale implementations.

Besides its practical applications, DQCI is also fasci-
nating from a fundamental perspective. Its power is
thought to lie somewhere between universal classical and
quantum computing—it is strictly less powerful than a
universal quantum computer [3] and no efficient classical
simulation has been found or thought likely to exist [8,9].
Furthermore its power is thought not to come from the
generation of entanglement, which is at most marginally
present in DQC1 [9]. This is surprising, as entangle-
ment is widely believed to lie at the heart of the advan-
tages offered by a quantum computer—a belief supported
by the discovery that a universal pure-state quantum com-
puter must generate a large amount of entanglement in
order to offer any speedup over a classical computer
[10,11]. However, no such proof exists for mixed-state
models. Instead it has been proposed that DQC1 gener-
ates other types of nonclassical correlations and that
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these are responsible for the computational advantage
[8,12—-14].

In this Letter we present a small-scale implementation of
DQCI1 in a linear-optic architecture [15]. We observe and
fully characterize the predicted nonclassical correlations.
Our results show that while there is no entanglement, other
intrinsically quantum mechanical correlations are gener-
ated, except in the cases where an efficient classical simu-
lation is always possible. Furthermore, we demonstrate
that a small fraction of a single pure quantum bit is enough
to implement DQCTI efficiently [9]. This represents the first
implementation of DQCI1 outside of a liquid-state NMR
architecture, in which the question of nonclassical corre-
lations was not addressed [16]. Unlike liquid-state NMR,
there are several known paths to scalable linear-optic
quantum computing [2,17,18], and there is active develop-
ment of the necessary technology [19-21].

We perform a first-order implementation of the DQCI1
algorithm for estimating the normalized-trace of a unitary
matrix [3,8,9,12]. This achieves an exponential speedup
over the best known classical approach; i.e., it requires
exponentially fewer resources as the size of the unitary
increases. It is thought highly unlikely that an efficient, but
as yet unknown, classical approach can exist [9]. That
DQCI1 can perform this task efficiently underpins its ability
to solve the range of practical problems listed above.

Figure 1 shows the normalized-trace estimation algo-
rithm. The required input state is separable and consists of
a single pure qubit ¢ (control) in the logical state |0){0], and
a register of n qubits in the completely mixed state 1,,/2",
where [, is the n-qubit identity. The circuit consists of the
standard Hadamard gate [1] applied to the control qubit,
and a unitary (U,,) on the register controlled by qubit c. The
state of all n + 1 qubits at the output of the circuit is
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where N = 2". The reduced state of qubit c—achieved by
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FIG. 1 (color online). Algorithm for estimating the
normalized trace of the unitary operator U,,, using deterministic
quantum computing with 1-qubit (DQC1). I, is the n-qubit
identity. Repeated running of the circuit and measurement of
qubit ¢ in the Pauli X (Y) basis yields an estimate of the
corresponding expectation value, from which one can derive
the real (imaginary) part of the normalized trace (Tt{U,]/2").

performing a partial trace over the register—is given by

_1 1 T U,]"/N
Pc =3 [ T{U,]/N 1 } 2)

Thus the normalized trace of U, is encoded in the co-
herences of qubit ¢, and can be retrieved by measuring the
expectation values of the standard Pauli operators X and Y,
since (X) = Re[Tr(U,))/N] and (Y) = —Im[Tr(U,)/N].

An expectation value is estimated by repeatedly running
the circuit. One can achieve a fixed accuracy e in this
estimate with a number of runs L ~ In(P,')/€?, where
P, is the probability that the estimate is farther from the
true value than € [9]. That the accuracy does not scale with
the size of the unitary, and scales logarithmically with the
error probability, means that this is an efficient algorithm
for estimating the normalized-trace. In contrast, classical
approaches suffer an exponential increase in the required
number of resources with the size of the unitary [9]. Note
that the algorithm does not efficiently return the full trace
Tr{ U, ]. This would require multiplying the estimate of the
normalized trace by 2", thereby amplifying the uncertainty
by an amount that is exponential in the size of the unitary.

We implement the first-order (n = 1) case for

1
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In this case (X) = (1 + cos#)/2 and (Y) = (sind)/2. Our
implementation is shown in Fig. 2. We encode quantum
information in the polarization of single photons. Single
qubit gates are realized deterministically using birefringent
wave plates. The two-qubit controlled-Z, gate is realized
nondeterministically using a recently developed technique
requiring only one cnot [15]. Measurement of single pho-
tons in the two output modes signals a successful run of the
algorithm and occurs with probability 1/12.

Each photonic qubit is passed through a polarization
interferometer, allowing the preparation of noisy (mixed)
states by introducing a path difference between the two
arms, Fig. 2. A path difference greater than the photon
coherence length results in a fully decohered—that is, a
fully mixed—photonic qubit. By tuning the path difference
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FIG. 2 (color online). Experimental schematic. Qubits at the

input and output are encoded in the polarization of single pho-

tons (|0) = |H), |1) = |V), horizontal and vertical). Coincident
measurement of single photons at fiber-coupled counting mod-
ules (D1, D2) signals a successful run of the algorithm. Photons

are generated via spontaneous parametric down conversion of a

frequency-doubled mode-locked Ti:sapphire laser (820 nm —

410 nm, A7 =80 fs at 82 MHz) pumping a type-I 2 mm

BiB;Og4 crystal; filtered to 820 = 1.5 nm; collected into two

single-mode optical fibers; then injected into free-space modes
¢ and r. With 100 mW at 410 nm, we measure a twofold co-

incidence rate at the output of the optical circuit of =100 s .

Interferometers are realized using calcite beam displacer pairs,

rotating one displacer of a pair about an axis perpendicular to the

plane defined by the two paths enables relative path length
control. The two-qubit gate is realized nondeterministically as

described in Ref. [29].
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between zero and the photon coherence length we can
accurately control the level of mixture in the qubit between
zero and maximum, respectively.

We implement the algorithm over the range —7 = 0 =
7 Eq. (3). Figure 3(a) compares the experimentally ob-
served results with the theoretical prediction (calculated
assuming perfect circuit operation and measured input
states). We observe high correlation between experiment
and theory quantified by a reduced x? of 0.7 (real curve)
and 1.2 (imaginary curve) [22]. Deviations are due to
imperfect circuit operation caused by optical beam steering
as @ is varied, interferometric instability and nonclassical
interference instability. These effects could be reduced by
moving to micro-optic systems [21].

Interestingly, the exponential speedup offered by this
algorithm is not compromised by reducing the purity of
qubit ¢ [9]. Consider replacing the initial state of this qubit
with the mixed state ;{/; + aZ}, where a now reflects the
purity (p = [1 + a?]/2, 0 = a = 1). At the output of the
circuit the state is now given by

1 1 aTi[U,]t/N
Pe = 5[ «TH{U, /N 1 ] “)

The effect of mixture in qubit ¢ is to reduce (X) and (Y)
by « [Eq. (2)], thereby making it harder to estimate the
normalized-trace. To achieve the same fixed accuracy as
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FIG. 3 (color online). Algorithm output. Real (blue or dark
gray) and imaginary (red or gray) parts of the normalized-trace
measured for two values of «, over a range of 6, Eq. (4). a is the
degree of purity of the control qubit as described in the text. (X)
is estimated by counting the number of coincident photon pairs
(N+) when projecting qubit ¢ into the states |*)=
(10) = [1))/+/2, over 10 sec. Then (X)= (N, — N_)/(N, +
N_). The same technique is used to estimate (Y), but in this
case we project into the states | = i) = (|0) = i|1))/+/2. All error
bars are calculated assuming Poissonian uncertainties in the
counting statistics. We use the standard definition for a
reduced- y? calculation [22], allowing for 3 degrees of freedom
[the real and imaginary parts of the trace are simple trigonomet-
ric functions defined by an amplitude, frequency and phase, Eq.
(3)]. Note that the goal of the algorithm is to return the normal-
ized trace. The full trace is not required for the DQCI applica-
tions mentioned in the introduction.

before requires an increased number of runs L' ~ L/a?.
While this clearly adds an additional overhead, as long as «
is nonzero, the algorithm still provides an efficient evalu-
ation of the trace. Even access to the tiniest fraction of a
single pure qubit is sufficient to achieve an exponential
speedup over the best known classical approach.

Figure 3(b) compares the experimentally observed algo-
rithm results with the theoretical predictions (calculated
assuming perfect circuit operation and measured input
states), for the measured value of @ = 0.58 = 0.02. We
observe a high degree of correlation between experiment
and theory quantified by a reduced y? of 1.8 (real curve)
and 2.0 (imaginary curve). The increased y? in this case
[compared to Fig. 3(a)] is due to a less favorable optical
alignment, not an intrinsic error associated with initializing
¢ into a mixed state. The additional resource overhead is
reflected in the amplitude reduction by a factor of «
compared with the results shown in Fig. 3(a). Note that
in the limit where the control qubit is completely incoher-
ent, « = 1, the entire input state is fully mixed and any
unitary evolution leaves the state unchanged—the algo-
rithm does not work. The ability to prepare the control

qubit in a superposition state that is at least partially
coherent is a necessary condition for a computational
speedup. However, as we show later, it is not sufficient.

We analyze the correlations generated by the algorithm
by performing tomography of the two-qubit output state,
Eq. (1), using 36 (overcomplete) measurement bases. This
allows a reconstruction of the density matrix, from which
the correlations can be derived. Figure 4 shows two mea-
sures of nonclassical correlations—the well-known rangle
[24,25] and the lesser-known discord [12—14]. The tangle
is a complete measure of entanglement in two-qubit states,
and represents perhaps the most striking divergence from
classical behavior. However, entanglement is not the only
kind of nonclassical correlation. A far stronger measure,
which encompasses entanglement and more, is given by
the discord.

The discord is concerned with a fundamental character-
istic of classical systems—that their information content is
locally accessible and can be obtained without perturbing
the state for independent observers [14]. If the discord is
zero there exists a local measurement protocol under which
all the state information can be revealed, without perturb-
ing the state for observers who do not have access to the
measurement results. If the discord is nonzero then no such
protocol exists. For pure states, discord is a measure of en-
tanglement—no other nonclassical correlations can be dis-
tinguished. However, for mixed states the discord captures
more nonclassical correlations than entanglement [12].

The results show that, to within experimental error, our
implementation does not give rise to any entanglement.
However, in general it does generate quantum discord. We
observe a high degree of correlation between the theoreti-
cal and measured discord values, quantified by a
reduced y? of 1.6. These results are consistent with recent
theoretical work [12] which predicts that, although the
entanglement is generally zero for arbitrary instances of
this algorithm, discord is consistently present.

In our implementation the discord is zero in two distinct
cases, 6 = {0, =7}, corresponding, respectively, to the
controlled-Z, gate implementing the identity / and the
controlled-sign gate CZ. . Both of these gates are mem-
bers of the Clifford group, as is the Hadamard [1]. Thus in
these cases the entire state evolution is implemented only
by gates from the Clifford group. Further, the algorithm
involves preparing the input in a mixture of logical basis
states, and measurement of observables in the Pauli group
[1]. Under these conditions the Gottesman-Knill theorem
states that the entire algorithm can always—i.e., for an
arbitrary-size implementation—be efficiently simulated on
a classical computer [1,26]. In contrast, for all other values
of @ the action of the controlled-Z, gate is responsible for a
non-Clifford-group evolution. There is no known classical
method to efficiently simulate an arbitrary-size algorithm
that evolves in this way—thereby allowing for a quantum
speedup. It is also straightforward to show that an imple-
mentation of the algorithm composed entirely of gates
from the Clifford group produces a state with zero discord
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FIG. 4 (color online). Nonclassical correlations generated by
our DQCI algorithm. Discord and tangle are derived from the
reconstructed density matrices measured at the algorithm output
for @ = 0.997 = 0.003 [Fig. 3(a)]. Discord is calculated by
optimizing over all 1-qubit projective measurements on qubit
¢, Fig. 1 [26]. Theoretical predictions are calculated using
measured input states and assuming perfect circuit operation.

(this is true to any order [26]). These results suggest a link
between discord and the potential for computational
speedup. An important path for further research is to
determine whether all DQCI1 circuits that do not generate
discord can be efficiently simulated on a classical com-
puter. Such a result would provide strong evidence that the
discord is a more accurate measure than entanglement of
the resources required for a quantum speedup.

Our circuit does not generate entanglement: it takes a
mixture of separable states at the input to a different mix-
ture of separable states at the output [26]. Indeed, this is
true for an arbitrary-size DQC1 implementation, with re-
spect to the partition between the register and the control
[4,9]. In general both the input and output consist of a
mixture of 2" separable states. The key to the computa-
tional power is that the mapping between the input and
output terms is highly nontrivial: any classical simulation
would need to keep track of the evolution of all 2" state
amplitudes. In the case of a Clifford group evolution the
mapping is trivial, and a classical simulation is efficient.

We have demonstrated a quantum algorithm that
achieves an exponential speedup over the best known
classical approach, and yet does not employ entanglement.
Instead we observed that the model generates other non-
classical correlations that can exist even in fully separable
highly mixed states. Besides the fundamental interest, this
could have implications in the many burgeoning quantum
computing architectures where environmental decoherence
presents a significant obstacle to universal pure-state quan-
tum computing. It is of interest to explore quantum discord
in other contexts, such as “nonlocality without entangle-
ment”’ [27,28]—while the two-qubit states of interest in
these works are not entangled they have nonzero discord,
signifying the presence of quantum correlations.
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