28 research outputs found

    Calcium levels and calcium: available phosphorus ratios in diets for white egg layers from 42 to 58 weeks of age

    Get PDF
    The experiment was conducted to determine the nutritional requirement of calcium and the best calcium:available phosphorus ratio for commercial layers at the post-laying peak. A total of 324 Hy-Line W-36 laying hens were utilized in the period from 42 to 58 weeks of age, distributed in a completely randomized design in a 3 × 3 factorial arrangement, composed of three levels of calcium (39, 42 and 45 g/kg) and three calcium:phosphorus ratios (12.12:1; 10.53:1; and 9.30:1), totaling nine treatments with six replications and six birds per experimental unit. There was no significant effect from the calcium levels × calcium:phosphorus ratio interaction for any of the variables studied. The calcium levels and the calcium:phosphorus ratios did not affect the variables performance or egg and bone quality. At the evaluation of the calcium:phosphorus balance, as the levels of calcium of the diet were raised, the intake of calcium and phosphorus and the contents of mineral matter and calcium in the excreta increased linearly, and the retention of calcium by birds decreased linearly. With the reduction of the calcium:phosphorus ratios of the diet, intake, retention and excretion of phosphorus by layers increased. Diets containing calcium at 39 g/kg and a calcium:phosphorus ratio of 12.12:1, corresponding to an increase in calcium of 3.51 g/bird/day and available phosphorus of 289 mg/bird/day, meet the requirements of calcium and available phosphorus of white egg layers in the period from 42 to 58 weeks of age

    Search for charged Higgs bosons produced in top-quark decays or in association with top quarks and decaying via H±→τ±ντ in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Charged Higgs bosons produced either in top-quark decays or in association with a top quark, subsequently decaying via H±→τ±ντ, are searched for in 140  fb−1 of proton-proton collision data at s=13  TeV recorded with the ATLAS detector. Depending on whether the top quark is produced together with the H± decays hadronically or semileptonically, the search targets τ+jets or τ+lepton final states, in both cases with a τ-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of 80≤mH±≤3000  GeV, upper limits at 95% confidence level are set on the production cross section of the charged Higgs boson times the branching fraction B(H±→τ±ντ) in the range 4.5 pb–0.4 fb. In the mass range 80–160 GeV, assuming the Standard Model cross section for tt¯ production, this corresponds to upper limits between 0.27% and 0.02% on B(t→bH±)×B(H±→τ±ντ).</jats:p

    Improved reconstruction of highly boosted τ -lepton pairs in the τ τ → (μνμντ )(hadrons + ντ ) decay channels with the ATLAS detector

    Get PDF
    This paper presents a new τ -lepton reconstruction and identification procedure at the ATLAS detector at the Large Hadron Collider, which leads to significantly improved performance in the case of physics processes where a highly boosted pair of τ -leptons is produced and one τ -lepton decays into a muon and two neutrinos (τμ), and the other decays into hadrons and one neutrino (τhad). By removing the muon information from the signals used for reconstruction and identification of the τhad candidate in the boosted pair, the efficiency is raised to the level expected for an isolated τhad. The new procedure is validated by selecting a sample of highly boosted Z → τμτhad candidates from the data sample of 140 fb−1 of proton–proton collisions at 13 TeV recorded with the ATLAS detector. Good agreement is found between data and simulation predictions in both the Z → τμτhad signal region and in a background validation region. The results presented in this paper demonstrate the effectiveness of the τhad reconstruction with muon removal in enhancing the signal sensitivity of the boosted τμτhad channel at the ATLAS detector

    Cross-section measurements for the production of a W-boson in association with high-transverse-momentum jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A set of measurements for the production of a W-boson in association with high-transverse-momentum jets is presented using 140 fb−1 of proton–proton collision data at a centre-of-mass energy of √s = 13 TeV collected by the ATLAS detector at the LHC. The measurements are performed in final states in which the W-boson decays into an electron or muon plus a neutrino and is produced in association with jets with pT > 30 GeV, where the leading jet has pT > 500 GeV. The angular separation between the lepton and the closest jet with pT > 100 GeV is measured and used to define a collinear phase space, wherein measurements of kinematic properties of the W-boson and the associated jet are performed. The collinear phase space is populated by dijet events radiating a W-boson and events with a W-boson produced in association with several jets and it serves as an excellent data sample to probe higher-order theoretical predictions. Measured differential distributions are compared with predictions from state-of-the-art next-to-leading order multi-leg merged Monte Carlo event generators and a fixedorder calculation of the W +1-jet process computed at nextto-next-to-leading order in the strong coupling constant

    Reconstruction and identification of pairs of collimated τ-leptons decaying hadronically using sqrt{s}=13 TeV pp collision data with the ATLAS detector

    Get PDF
    This paper describes an algorithm for reconstructing and identifying a highly collimated hadronically decaying τ -lepton pair with low transverse momentum. When two τ -leptons are highly collimated, their visible decay products might overlap, degrading the reconstruction performance for each of the τ -leptons. A dedicated treatment attempting to tag the τ -lepton pair as a single object is required. The reconstruction algorithm is based on a large radius jet and its associated two leading subjets, and the identification uses a boosted decision tree to discriminate between signatures from τ +τ − systems and those arising from QCD jets. The efficiency of the identification algorithm is measured in Zγ events using proton–proton collision data at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. The resulting data-to-simulation scale factors are close to unity with uncertainties ranging from 26 to 37%
    corecore