2,437 research outputs found

    Optimal conditions for the numerical calculation of the largest Lyapunov exponent for systems of ordinary differential equations

    Full text link
    A general indicator of the presence of chaos in a dynamical system is the largest Lyapunov exponent. This quantity provides a measure of the mean exponential rate of divergence of nearby orbits. In this paper, we show that the so-called two-particle method introduced by Benettin et al. could lead to spurious estimations of the largest Lyapunov exponent. As a comparator method, the maximum Lyapunov exponent is computed from the solution of the variational equations of the system. We show that the incorrect estimation of the largest Lyapunov exponent is based on the setting of the renormalization time and the initial distance between trajectories. Unlike previously published works, we here present three criteria that could help to determine correctly these parameters so that the maximum Lyapunov exponent is close to the expected value. The results have been tested with four well known dynamical systems: Ueda, Duffing, R\"ossler and Lorenz.Comment: 12 pages, 8 figures. Accepted in the International Journal of Modern Physics

    Effect of Co-Inoculation with Mycorrhiza and Rhizobia on the Nodule Trehalose Content of Different Bean Genotypes

    Get PDF
    Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content

    Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method

    Get PDF
    We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications

    Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods

    Get PDF
    The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance

    Branched Chain Amino Acids are associated with Metabolic Complications in Liver Transplant Recipients

    Get PDF
    BACKGROUND: Obesity, dyslipidemia and type 2 diabetes (T2D) contribute substantially to increased cardiovascular morbidity and mortality in patients after orthotopic liver transplantation (OLTx). Elevated plasma branched chain amino acids (BCAA) are linked to metabolic disturbances and cardiovascular disease (CVD) risk profiles in several non-OLTx populations. METHODS: Cross-sectional analysis of liver transplant recipients from TransplantLines, a single-center biobank and cohort study. BCAA plasma levels were measured by means of nuclear-magnetic resonance spectroscopy. CVD and cardiometabolic factors were collected by using data from electronic patient records. Associations were determined between BCAA plasma levels and T2D, Metabolic Syndrome (MetS), CVD as well as mTOR inhibition in liver transplant recipients. RESULTS: 336 Patients were divided into sex-stratified tertiles of total BCAA. MetS (P<0.001) and T2D (P=0.002) were significantly more frequent in subjects in the highest BCAA tertile. In logistic regression analyses, the multivariable adjusted odds ratio (OR) per 1 standard deviation increase in BCAA was 1.68 (95%CI: 1.18-2.20, P=0.003) for MetS and 1.60 (95%CI: 1.14-2.23, P=0.006) for T2D. Use of Sirolimus (mTOR inhibitor) was significantly associated with higher BCAA plasma levels, independent of age, sex, time after OLTx, MetS and other immunosuppressive medication (adjusted P=0.002). CONCLUSION: Elevated BCAA plasma levels are associated with T2D, MetS and use of Sirolimus in liver transplant recipients. BCAA plasma levels may represent a valuable biomarker for cardiometabolic complications after OLTx

    Modelado del efecto de la variabilidad climática local sobre la transmisión de dengue en Medellín (Colombia) mediante análisis de series temporales

    Get PDF
    Introduction: Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease.Objective: To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease.Materials and methods: The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behaviorof the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models.Results: The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay.Conclusions: In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.doi: http://dx.doi.org/10.7705/biomedica.v33i0.1444Introducción. El dengue es una enfermedad de transmisión vectorial de gran impacto en la salud pública. La transmisión del dengue es afectada por factores entomológicos, socioculturales y económicos. Además, la variabilidad climática juega un importante papel en la dinámica de transmisión. Un amplio consenso científico ha indicado que la fuerte asociación entre la enfermedad y las variables climáticas podría ser empleada para desarrollar modelos que expliquen la incidencia de la enfermedad.Objetivo. Desarrollar un modelo que permita comprender la dinámica de transmisión del dengue en Medellín y predecir incrementos en la incidencia de la enfermedad.Materiales y métodos. Se empleó la incidencia de dengue como variable dependiente y como variables independientes, los factores climáticos (temperatura máxima, media y mínima, humedad relativa y precipitación) registrados a escala semanal. Se utilizó el programa Expert Modeler para desarrollar un modelo que explique mejor el comportamiento de la enfermedad. Mediante modelos ARIMA, se seleccionaron las variables climáticas que tuvieron una relación significativa con la variable dependiente.Resultados. El 34 % de la variabilidad observada se explicó por el modelo. La precipitación fue la variable climática que mostró una asociación estadísticamente significativa con la incidencia del dengue, pero con un rezago de 20 semanas.Conclusiones. La transmisión del dengue en Medellín se vio afectada por la variabilidad climática, en particular, por la precipitación. La fuerte asociación entre el dengue y la precipitación permitió construir un modelo que ayuda a comprender la dinámica de transmisión, información que será de gran utilidad para el desarrollo de adecuadas y oportunas estrategias de control. doi: http://dx.doi.org/10.7705/biomedica.v33i0.1444

    an observational study

    Get PDF
    Pulmonary tuberculosis (PTB) results in lung functional impairment and there are no surrogate markers to monitor the extent of lung involvement. We investigated the clinical significance of S100A12 and soluble receptor for advanced glycation end-products (sRAGE) for predicting the extent of lung involvement. We performed an observational study in India with 119 newly diagnosed, treatment naïve, sputum smear positive, HIV-negative PTB patients and 163 healthy controls. All patients were followed-up for six months. Sociodemographic variables and the serum levels of S100A12, sRAGE, esRAGE, HMGB-1, TNF-α, IFN-γ and CRP were measured. Lung involvement in PTB patients was assessed by chest radiography. Compared with healthy controls, PTB patients had increased serum concentrations of S100A12 while sRAGE was decreased. S100A12 was an independent predictor of disease occurrence (OR 1.873, 95%CI 1.212–2.891, p = 0.004). Under DOTS therapy, S100A12 decreased significantly after 4 months whereas CRP significantly decreased after 2 months (p < 0.0001). Importantly, although CRP was also an independent predictor of disease occurrence, only S100A12 was a significant predictor of lung alveolar infiltration (OR 2.60, 95%CI 1.35–5.00, p = 0.004). These results suggest that S100A12 has the potential to assess the extent of alveolar infiltration in PTB

    High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama

    Get PDF
    Background: The long‑distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has intro‑ duced arthropod‑borne viruses into new geographical regions, causing a significant medical and economic burden. The used‑tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mos‑ quito eggs by comparing our findings to those based on traditional larval surveillance. Results: Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log‑odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log‑odds of 0.36 (0.09 ± 0.63; P = 0.008). Identifica‑ tion of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. Conclusions: Garages trading used tires along highways should be targeted for the surveillance and control of Aedes‑mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveil‑ lance; this is of importance for disease risk assessment.Background: The long‑distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has intro‑ duced arthropod‑borne viruses into new geographical regions, causing a significant medical and economic burden. The used‑tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mos‑ quito eggs by comparing our findings to those based on traditional larval surveillance. Results: Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log‑odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log‑odds of 0.36 (0.09 ± 0.63; P = 0.008). Identifica‑ tion of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. Conclusions: Garages trading used tires along highways should be targeted for the surveillance and control of Aedes‑mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveil‑ lance; this is of importance for disease risk assessment

    Magnetoliposomas multifuncionales como vehículos de administración de fármacos para el tratamiento potencial de la enfermedad de Parkinson

    Get PDF
    La enfermedad de Parkinson (EP) es el segundo trastorno neurodegenerativo más frecuente después de la enfermedad de Alzheimer. Por ello, el desarrollo de nuevas tecnologías y estrategias para tratarla es una prioridad sanitaria mundial. Los tratamientos actuales incluyen la administración de levodopa, inhibidores de la monoaminooxidasa, inhibidores de la catecol-O-metiltransferasa y fármacos anticolinérgicos. Sin embargo, la liberación efectiva de estas moléculas, debido a la limitada biodisponibilidad, es un reto importante para el tratamiento de la EP. Como estrategia para resolver este desafío, en este estudio desarrollamos un novedoso sistema de liberación de fármacos multifuncional magnético y sensible a estímulos redox, basado en nanopartículas de magnetita funcionalizadas con la proteína translocadora de alto rendimiento OmpA y encapsuladas en liposomas de lecitina de soja. Los magnetoliposomas multifuncionales (MLP) obtenidos se ensayaron en neuroblastoma, glioblastoma, astrocitos primarios humanos y de rata, células endoteliales de rata de barrera hematoencefálica, células endoteliales microvasculares primarias de ratón y en un modelo celular inducido por EP. Los MLP demostraron un excelente rendimiento en ensayos de biocompatibilidad, incluyendo hemocompatibilidad (porcentajes de hemólisis por debajo del 1%), agregación plaquetaria, citocompatibilidad (viabilidad celular por encima del 80% en todas las líneas celulares probadas), potencial de membrana mitocondrial (alteraciones no observadas) y producción intracelular de ROS (impacto insignificante en comparación con los controles). Además, las nanovehículas mostraron una aceptable internalización celular (área cubierta cercana al 100% a los 30 min y a las 4 h) y capacidad de escape endosomal (disminución significativa de la colocalización lisosomal tras 4 h de exposición). Además, se emplearon simulaciones de dinámica molecular para comprender mejor el mecanismo de translocación subyacente de la proteína OmpA, mostrando hallazgos clave relativos a interacciones específicas con fosfolípidos. En general, la versatilidad y el notable rendimiento in vitro de este novedoso nanovehículo lo convierten en una tecnología de administración de fármacos adecuada y prometedora para el tratamiento potencial de la EP.Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD
    • …
    corecore