359 research outputs found
Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions
Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics
The Settlement and Drainage of the Wentlooge Level, Gwent: Excavation and Survey at Rumney Great Wharf 1992
Reproduced with the permission of the publisher and JSTOR. Journal home page http://www.romansociety.org/frame.htmIntroduction: The Wentlooge Level in SE Wales represents an extensive area of some 35 km' of alluvium
reclaimed from estuarine saltmarsh from the Romano-British period onwards (FIGS I-2).1 As
was noted by Allen,' the landscape is characterised at its southern and northern extremities by
a pattern of small irregular fields, often fossilizing the meanderings of natural drainage channels
(FIG. 2). This arrangement is typical of many of the reclaimed alluvial wetlands that fringe the
Severn Estuary.' The remainder of the Wentlooge Level is distinguished by a very different
landscape, comprising regularly planned blocks of long, narrow, and generally straight-sided fields,
quite unique among the wetlands of the Severn Estuary.4 At Rumney Great Wharf, north east of
Cardiff, part of the latter field-system can be seen cut into a clay-peat shelf in the intertidal zone (see
below), thus indicating a major episode of coastal retreat and the repositioning of the sea-wall across
it;s similar evidence from the intertidal zone can be recognised as far to the north-east as Peterstone
Gout.6 An extensive spread of Romano-British pottery and primitive iron-making slag was
associated locally with this field-system in the intertidal zone at Rumney Great Wharf, while survey
of the adjacent mud cliff revealed at least one ditch, sealed by a buried palaeosol, which yielded
stratified Roman material. Further erosion of the mud cliff revealed more ditches with Romano-
British material, as well as other indications of settlement, and prompted a programme of survey and
excavation grant-aided by Cadw and the National Museum of Wales in the spring of 1992
Creativity during threat to organizational survival : the influence of employee creativity on downsizing survival selection
Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle
Froude supercritical flow processes and sedimentary structures: new insights from experiments with a wide range of grain sizes
Recognition of Froude supercritical flow deposits in environments that range from rivers to the ocean floor has triggered a surge of interest in their flow processes, bedforms and sedimentary structures. Interpreting these supercritical flow deposits is especially important because they often represent the most powerful flows in the geological record. Insights from experiments are key to reconstruct palaeo‐flow processes from the sedimentary record. So far, all experimentally produced supercritical flow deposits are of a narrow grain‐size range (fine to medium sand), while deposits in the rock record often consist of a much wider grain‐size distribution. This paper presents results of supercritical‐flow experiments with a grain‐size distribution from clay to gravel. These experiments show that cyclic step instabilities can produce more complex and a larger variety of sedimentary structures than the previously suggested backsets and ‘scour and fill’ structures. The sedimentary structures are composed of irregular lenses, mounds and wedges with backsets and foresets, as well as undulating planar to low‐angle upstream and downstream dipping laminae. The experiments also demonstrate that the Froude number is not the only control on the sedimentary structures formed by supercritical‐flow processes. Additional controls include the size and migration rate of the hydraulic jump and the substrate cohesion. This study further demonstrates that Froude supercritical flow promotes suspension transport of all grain sizes, including gravels. Surprisingly, it was observed that all grain sizes were rapidly deposited just downstream of hydraulic jumps, including silt and clay. These results expand the range of dynamic mud deposition into supercritical‐flow conditions, where local transient shear stress reduction rather than overall flow waning conditions allow for deposition of fines. Comparison of the experimental deposits with outcrop datasets composed of conglomerates to mudstones, shows significant similarities and highlights the role of hydraulic jumps, rather than overall flow condition changes, in producing lithologically and geometrically complex stratigraphy
Bedforms and sedimentary structures related to supercritical flows in glacigenic settings
Upper-flow-regime bedforms, including upper-stage-plane beds, antidunes, chutes-and-pools and cyclic steps, are ubiquitous in glacigenic depositional environments characterized by abundant meltwater discharge and sediment supply. In this study, the depositional record of Froude near-critical and supercritical flows in glacigenic settings is reviewed, and similarities and differences between different depositional environments are discussed. Upper-flow-regime bedforms may occur in subglacial, subaerial and subaqueous environments, recording deposition by free-surface flows and submerged density flows. Although individual bedform types are generally not indicative of any specific depositional environment, some observed trends are similar to those documented in non-glacigenic settings. Important parameters for bedform evolution that differ between depositional environments include flow confinement, bed slope, aggradation rate and grain size. Cyclic-step deposits are more common in confined settings, like channels or incised valleys, or steep slopes of coarse-grained deltas. Antidune deposits prevail in unconfined settings and on more gentle slopes, like glacifluvial fans, sand-rich delta slopes or subaqueous (ice-contact) fans. At low aggradation rates, only the basal portions of bedforms are preserved, such as scour fills related to the hydraulic-jump zone of cyclic steps or antidune-wave breaking, which are common in glacifluvial systems and during glacial lake-outburst floods and (related) lake-level falls. Higher aggradation rates result in increased preservation potential, possibly leading to the preservation of complete bedforms. Such conditions are met in sediment-laden jökulhlaups and subaqueous proglacial environments characterized by expanding density flows. Coarser-grained sediment leads to steeper bedform profiles and highly scoured facies architectures, while finer-grained deposits display less steep bedform architectures. Such differences are in part related to stronger flows, faster settling of coarse clasts, and more rapid breaking of antidune waves or hydraulic-jump formation over hydraulically rough beds. © 2020 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologist
Deposition and preservation of fluvio-tidal shallow-marine sandstones: A re-evaluation of the Neoproterozoic Jura Quartzite (western Scotland)
The 2 to 5 km thick, sandstone‐dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide‐influenced shelf deposit and herein re‐interpreted within a fluvio‐tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re‐interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal‐shelf sandstones. The predominant facies (compound cross‐bedded, coarse‐grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio‐tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically‐lower, parts of channel‐bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially‐enhanced ebb tidal currents. Finer‐grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower‐energy environments, including channel mouth bars, between and down depositional‐dip of higher energy fluvio‐ebb tidal bars. The lack of wave‐formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non‐shelf setting. Hence, a sand‐rich, fluvial–tidal, current‐dominated, largely sub‐tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea‐level and/or sediment supply changes. Consideration of preservation bias towards high‐energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones
Unit bar architecture in a highly‐variable fluvial discharge regime: Examples from the Burdekin River, Australia
Unit bars are relatively large bedforms that develop in rivers over a wide range of climatic regimes. Unit bars formed within the highly-variable discharge Burdekin River in Queensland, Australia, were examined over three field campaigns between 2015 and 2017. These bars had complex internal structures, dominated by co-sets of cross-stratified and planar-stratified sets. The cross-stratified sets tended to down-climb. The development of complex internal structures was primarily a result of three processes: (i) superimposed bedforms reworking the unit bar avalanche face; (ii) variable discharge triggering reactivation surfaces; and (iii) changes in bar growth direction induced by stage change. Internal structures varied along the length and across the width of unit bars. For the former, down-climbing cross-stratified sets tended to pass into single planar cross-stratified deposits at the downstream end of emergent bars; such variation related to changes in fluvial conditions whilst bars were active. A hierarchy of six categories of fluvial unsteadiness is proposed, with these discussed in relation to their effects on unit bar (and dune) internal structure. Across-deposit variation was caused by changes in superimposed bedform and bar character along bar crests; such changes related to the three-dimensionality of the channel and bar geometry when bars were active. Variation in internal structure is likely to be more pronounced in unit bar deposits than in smaller bedform (for example, dune) deposits formed in the same river. This is because smaller bedforms are more easily washed out or modified by changing discharge conditions and their smaller dimensions restrict the variation in flow conditions that occur over their width. In regimes where unit bar deposits are well-preserved, their architectural variability is a potential aid to their identification. This complex architecture also allows greater resolution in interpreting the conditions before and during bar initiation and development
Reply to the comments of Assine et al. (Comments on paper by M. Arai "Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective")
Centro de Geociências Aplicadas Ao Petróleo - UNESPetro Instituto de Geociências e Ciências Exatas - IGCe Universidade Estadual Paulista Júlio de Mesquita Filho - UNESPCentro de Geociências Aplicadas Ao Petróleo - UNESPetro Instituto de Geociências e Ciências Exatas - IGCe Universidade Estadual Paulista Júlio de Mesquita Filho - UNES
- …
