948 research outputs found

    Allen Linear (Interval) Temporal Logic --Translation to LTL and Monitor Synthesis--

    Get PDF
    The relationship between two well established formalisms for temporal reasoning is first investigated, namely between Allen's interval algebra (or Allen's temporal logic, abbreviated \ATL) and linear temporal logic (\LTL). A discrete variant of \ATL is defined, called Allen linear temporal logic (\ALTL), whose models are \omega-sequences of timepoints, like in \LTL. It is shown that any \ALTL formula can be linearly translated into an equivalent \LTL formula, thus enabling the use of \LTL techniques and tools when requirements are expressed in \ALTL. %This translation also implies the NP-completeness of \ATL satisfiability. Then the monitoring problem for \ALTL is discussed, showing that it is NP-complete despite the fact that the similar problem for \LTL is EXPSPACE-complete. An effective monitoring algorithm for \ALTL is given, which has been implemented and experimented with in the context of planning applications

    A preliminary “least cost” study of future groundwater development in northeastern Illinois

    Get PDF
    Cover title.Includes bibliographical references (p. 19)

    Relativistic two-body equation based on the extension of the SL(2,C) group

    Get PDF
    A new approach to the two-body problem based on the extension of the SL(2,C)SL(2,C) group to the Sp(4,C)Sp(4,C) one is developed. The wave equation with various forms of including the interaction for the system of the spin-1/2 and spin-0 particles is constructed. For this system, it was found that the wave equation with a linear confinement potential involved in the non-minimal manner has an oscillator-like form and possesses the exact solution.Comment: 9 pages, no figure

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    Interactions for odd-omega gap singlet superconductors

    Full text link
    A class of singlet superconductors with a gap function Δ(k,ωn)\Delta({\bf k}, \omega_n) which is {\it odd} in both momentum and Matsubara frequency was proposed recently \cite{ba}. To show an instability in the {\it odd} gap channel, a model phonon propagator was used with the pp-wave interaction strength larger than the ss-wave. We argue that the positive scattering matrix element entering the Eliashberg equations leads to a constraint on the relative strength of pp- and ss-wave interactions which inhibits odd pairing. However, a general spin dependent electron-electron interaction can satisfy all constraints and produce the odd singlet gap. A possibility which may lead to an odd gap is a strongly antiferromagnetically correlated system, such as a high-TcT_c material.Comment: This paper corrects some errors (including the omission of one of the authors) in the original 9206003 and also a minor error in the published version, Phys. Rev. B {\bf 47}, 513 (1993). It also contains some comments on subsequent claims of the impossibility of odd-frequency pairing. Latex fil

    Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles

    Full text link
    The vibrational properties (phonons) of a one-dimensional periodic phase of atoms physisorbed in the external groove of the carbon nanotube bundle are studied. Analytical expressions for the phonon dispersion relations are derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure

    Progress and challenges in the understanding of chronic urticaria

    Get PDF
    Chronic urticaria is a skin disorder characterized by transient pruritic weals that recur from day to day for 6 weeks or more. It has a great impact on patients' quality of life. In spite of this prevalence and morbidity, we are only beginning to understand its physiopathology and we do not have a curative treatment. Moreover, a patient with chronic urticaria may undergo extensive laboratory evaluations seeking a cause only to be frustrated when none is found. In recent years there have been significant advances in our understanding of some of the molecular mechanisms responsible for hive formation. The presence and probable role of IgG autoantibodies directed against epitopes expressed on the alpha-chain of the IgE receptor and to lesser extent, to IgE in a subset of patients is generally acknowledged. These autoantibodies activate complement to release C5a, which augments histamine release, and IL4 and leukotriene C4 are released as well. A perivascular cellular infiltrate results without predominance of either Th1 or Th2 lymphocyte subpopulations. Basophils of all chronic urticaria patients (autoimmune or idiopathic) are hyperresponsive to serum, regardless of source, but poorly responsive to anti IgE. In this review we will summarize the recent contributions to this field and try to provide insights to possible future directions for research on this disease

    The price of rapid exit in venture capital-backed IPOs

    Get PDF
    This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented

    The superconducting phase of Calcium under the pressure at 200 GPa: the strong-coupling description

    Full text link
    The thermodynamic parameters of the superconducting state in Calcium under the pressure at 200 GPa have been determined. The numerical analysis by using the Eliashberg equations in the mixed representation has been conducted. It has been stated, that the critical temperature (TCT_{C}) decreases from 36.15 K to 20.79 K dependently on the assumed value of the Coulomb pseudopotential (μ\mu^{*}\in). Next, the order parameter near the temperature of zero Kelvin (Δ(0)\Delta(0)) has been obtained. It has been proven, that the dimensionless ratio 2Δ(0)/kBTC2\Delta(0)/k_{B}T_{C} decreases from 4.25 to 3.90 together with the growth of μ\mu^{*}. Finally, the ratio of the electron effective mass to the electron bare mass (me/mem^{*}_{e}/m_{e}) has been calculated. It has been shown, that me/mem^{*}_{e}/m_{e} takes the high value in the whole range of the superconducting phase's existence, and its maximum is equal to 2.23 for T=T_{C}.Comment: 5 pages, 5 figure

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne
    corecore