759 research outputs found
Heat transfer to a gas containing a cloud of particles
Heat transfer to gas containing particle clou
Evolution of JAK-STAT pathway components : mechanisms and role in immune system development
BackgroundLying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms.ResultsOur analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components.ConclusionDiversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.<br /
ETV6 (TEL1) regulates embryonic hematopoiesis in zebrafish
Chromosomal translocations involving fusions of the human ETV6 (TEL1) gene occur frequently in hematologic malignancies. However, a detailed understanding of the normal function of ETV6 remains incomplete. This study has employed zebrafish as a relevant model to investigate the role of ETV6 during embryonic hematopoiesis. Zebrafish possessed a single conserved etv6 ortholog that was expressed from 12 hpf in the lateral plate mesoderm, and later in hematopoietic, vascular and other tissues. Morpholino-mediated gene knockdown of etv6 revealed the complex contribution of this gene toward embryonic hematopoiesis. During primitive hematopoiesis, etv6 knockdown resulted in reduced levels of progenitor cells, erythrocyte and macrophage populations, but increased numbers of incompletely differentiated heterophils. Definitive hematopoiesis was also perturbed, with etv6 knockdown leading to decreased erythrocytes and myeloid cells, but enhanced lymphopoiesis. This study suggests that ETV6 plays a broader and more complex role in early hematopoiesis than previously thought, impacting on the development of multiple lineages. © 2015 Ferrata Storti Foundation
The Millennium Galaxy Catalogue: The connection between close pairs and asymmetry; implications for the galaxy merger rate
We compare the use of galaxy asymmetry and pair proximity for measuring
galaxy merger fractions and rates for a volume limited sample of 3184 galaxies
with -21 < M(B) -5 log h < -18 mag. and 0.010 < z < 0.123 drawn from the
Millennium Galaxy Catalogue. Our findings are that:
(i) Galaxies in close pairs are generally more asymmetric than isolated
galaxies and the degree of asymmetry increases for closer pairs. At least 35%
of close pairs (with projected separation of less than 20 h^{-1} kpc and
velocity difference of less than 500 km s^{-1}) show significant asymmetry and
are therefore likely to be physically bound.
(ii) Among asymmetric galaxies, we find that at least 80% are either
interacting systems or merger remnants. However, a significant fraction of
galaxies initially identified as asymmetric are contaminated by nearby stars or
are fragmented by the source extraction algorithm. Merger rates calculated via
asymmetry indices need careful attention in order to remove the above sources
of contamination, but are very reliable once this is carried out.
(iii) Close pairs and asymmetries represent two complementary methods of
measuring the merger rate. Galaxies in close pairs identify future mergers,
occurring within the dynamical friction timescale, while asymmetries are
sensitive to the immediate pre-merger phase and identify remnants.
(iv) The merger fraction derived via the close pair fraction and asymmetries
is about 2% for a merger rate of (5.2 +- 1.0) 10^{-4} h^3 Mpc^{-3} Gyr^{-1}.
These results are marginally consistent with theoretical simulations (depending
on the merger time-scale), but imply a flat evolution of the merger rate with
redshift up to z ~1.Comment: 10 pages, 10 figures, emulateapj format. ApJ, accepte
Bone Morphogenetic Protein and its Option as an Alveolar Cleft Treatment
Indexación: Scopus; Scielo.Bone morphogenetic protein (BMP) is an endogenous protein that has shown significant effects in the promotion of bone formation. BMP also has been described in the reconstruction of traumatic and pathological bone defects, including alveolar cleft, alveolar ridge augmentation, maxillary sinus elevation, and applications in post-extraction alveolus graft, and peri-implant surgery among others. Despite the advantages associated with the use of BMP, currently is applied in combination with collagen matrices, which has certain properties such as low mechanical resistance and a high burst initial release that diminish its effectiveness in bone formation. In this context, the development of novel systems with greater mechanical resistance and prolonged release of BMP, that lead to chemotaxis of mesenchymal cells, following by its differentiation to osteoblasts represents a major challenge that holds outstanding clinical potential for the stimulation of bone formation. In this paper, we describe the use of BMP for the reconstruction of alveolar clefts, and its advantages being administrated in polymeric microparticles as sustain release system with promising applications in the stimulation of bone formation.http://ref.scielo.org/ps5w6
A Morphological-type dependence in the mu_0-log(h) plane of Spiral galaxy disks
We present observational evidence for a galaxy `Type' dependence to the
location of a spiral galaxy's disk parameters in the mu_0-log(h) (central disk
surface-brightness - disk scale-length) plane. With a sample of ~40 Low Surface
Brightness galaxies (both bulge- and disk-dominated) and ~80 High Surface
Brightness galaxies, the early-type disk galaxies (<=Sc) tend to define a
bright envelope in the mu_0-log(h) plane, while the late-type (>=Scd) spiral
galaxies have, in general, smaller and fainter disks. Below the defining
surface brightness threshold for a Low Surface Brightness galaxy (i.e. more
than 1 mag fainter than the 21.65 B-mag arcsec^(-2) Freeman value), the
early-type spiral galaxies have scale-lengths greater than 8-9 kpc, while the
late-type spiral galaxies have smaller scale-lengths. All galaxies have been
modelled with a seeing-convolved Sersic r^(1/n) bulge and exponential disk
model. We show that the trend of decreasing bulge shape parameter (n) with
increasing Hubble type and decreasing bulge-to-disk luminosity ratio, which has
been observed amongst the High Surface Brightness galaxies, extends to the Low
Surface Brightness galaxies, revealing a continuous range of structural
parameters.Comment: To be published in ApJ. Inc. three two-part figure
Metabolic profile analysis of zebrafish embryos
A growing goal in the field of metabolism is to determine the impact of genetics on different aspects of mitochondrial function. Understanding these relationships will help to understand the underlying etiology for a range of diseases linked with mitochondrial dysfunction, such as diabetes and obesity. Recent advances in instrumentation, has enabled the monitoring of distinct parameters of mitochondrial function in cell lines or tissue explants. Here we present a method for a rapid and sensitive analysis of mitochondrial function parameters in vivo during zebrafish embryonic development using the Seahorse bioscience XF 24 extracellular flux analyser. This protocol utilizes the Islet Capture microplates where a single embryo is placed in each well, allowing measurement of bioenergetics, including: (i) basal respiration; (ii) basal mitochondrial respiration (iii) mitochondrial respiration due to ATP turnover; (iv) mitochondrial uncoupled respiration or proton leak and (iv) maximum respiration. Using this approach embryonic zebrafish respiration parameters can be compared between wild type and genetically altered embryos (mutant, gene over-expression or gene knockdown) or those manipulated pharmacologically. It is anticipated that dissemination of this protocol will provide researchers with new tools to analyse the genetic basis of metabolic disorders in vivo in this relevant vertebrate animal model
- …
