1,511 research outputs found

    The nucleon to Delta electromagnetic transition form factors in lattice QCD

    Full text link
    The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form factors are evaluated for the first time in full QCD to sufficient accuracy to exclude a zero value, which is taken as a signal for deformation in the nucleon-Delta system. For the Coulomb quadrupole form factor the unquenched results show deviations from the quenched results at low q^2 bringing dynamical lattice results closer to experiment, thereby confirming the importance of pion cloud contributions on this quantity.Comment: 15 pages, 8 Figure

    Hadron wave functions and the issue of nucleon deformation

    Get PDF
    Using gauge invariant hadronic two- and three- density correlators we extract information on the spatial distributions of quarks in hadrons, and on hadron shape and multipole moments within quenched lattice QCD. Combined with the calculation of N to Delta transition amplitudes the issue of nucleon deformation can be addressed.Comment: 4 pages, 7 figures. Talk presented at the PANIC02 conference, Sept. 30 - Oct. 4, 2002, Osaka, Japan. Discussion of the N to Delta results modifie

    Momentum dependence of the N to Delta transition form factors

    Full text link
    We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at β=6.0\beta=6.0 on a 323×6432^3 \times 64 lattice. We address a number of technical issues such as the optimal combination of matrix elements and the simultaneous overconstrained analysis of all lattice vector momenta contributing to a given momentum transfer squared, Q2Q^2.Comment: Talk presented at Lattice 2004 (spectrum), Fermilab, 21-26 Jun. 2004. 3 pages, 3 figures. One typo in phenomenological Ansatz correcte

    Axial Nucleon to Delta transition form factors on 2+1 flavor hybrid lattices

    Full text link
    We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in the low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.Comment: 1+2 pages, 2 figures, 1 Table, Erratum to C. Alexandrou et.al., Phys. Rev. D 76, 094511 (2007

    Heavy-light baryonic mass splittings from the lattice

    Get PDF
    We present lattice estimates of the mass of the heavy-light baryons Λb\Lambda_b and Ξb\Xi_b obtained using propagating heavy quarks. For Λb\Lambda_b our result is MΛb=5.728±0.144±0.018M_{\Lambda_b}=5.728 \pm 0.144 \pm 0.018 GeV, after extrapolation to the continuum limit and in the quenched approximation.Comment: 3 pages postscript, Contribution to Lattice'9

    Gauge-invariant two- and three- density correlators

    Get PDF
    Gauge-invariant spatial correlations between two and three quarks inside a hadron are measured within quenched and unquenched QCD. These correlators provide information on the shape and multipole moments of the pion, the rho, the nucleon and the Δ\Delta.Comment: 3 pages, 7 figures, Lattice 2002 (Hadronic Matrix Elements). Layout of figures adjuste

    A lattice study of the pentaquark states

    Full text link
    We present a study of the pentaquark system in quenched lattice QCD using diquark-diquark and kaon-nucleon local and smeared interpolating fields. We examine the volume dependence of the spectral weights of local correlators on lattices of size 163×3216^3\times 32, 243×3224^3\times32 and 323×6432^3\times 64 at β=6.0\beta=6.0. We find that a reliable evaluation of the volume dependence of the spectral weights requires accurate determination of the correlators at large time separations. Our main result from the spectral weight analysis in the pentaquark system is that within our variational basis and statistics we can not exclude a pentaquark resonance. However our data also do not allow a clear identification of a pentaquark state since only the spectral weights of the lowest state can be determined to sufficient accuracy to test for volume dependence. In the negative parity channel the mass extracted for this state is very close to the KN threshold whereas in the positive parity channel is about 60% above.Comment: Manuscript expanded, discussion of two-pion system included, a comment regarding Ref.13 was corrected, version to appear in Phys. Rev. D, 19 figure

    Calculation of fermion loops for η\eta^\prime and nucleon scalar and electromagnetic form factors

    Full text link
    The exact evaluation of the disconnected diagram contributions to the flavor-singlet pseudoscalar meson mass, the nucleon sigma term and the nucleon electromagnetic form factors, is carried out utilizing GPGPU technology with the NVIDIA CUDA platform. The disconnected loops are also computed using stochastic methods with several noise reduction techniques. Various dilution schemes as well as the truncated solver method are studied. We make a comparison of these stochastic techniques to the exact results and show that the number of noise vectors depends on the operator insertion in the fermionic loop.Comment: Version accepted for publication in Comp. Phys. Commun. References added. 13 pages, 12 figure
    corecore