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Hadron wave functions and the issue of nucleon deformation ∗
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Using gauge invariant hadronic two- and three- density correlators we extract informa-
tion on the spatial distributions of quarks in hadrons, and on hadron shape and multipole
moments within quenched lattice QCD. Combined with the calculation of N to ∆ transi-
tion amplitudes the issue of nucleon deformation can be addressed.

1. Introduction

Correlation functions calculated in lattice QCD can be connected to basic hadronic
features. Two- and three- density correlators for mesons and baryons reduce in the non-
relativistic limit to the square of the wave function and therefore provide detailed informa-
tion on hadron structure such as quark spatial distributions, hadronic shapes and charge
radii. In addition lattice results can be used to test predictions in various models. Direct
connection to the issue of nucleon deformation, currently under experimental investiga-
tion [1,2], is made by calculating the γ∗N to ∆ transition form factors in quenched and
unquenched lattice QCD. The aim is to obtain an accurate determination of the ratio of
the electric quadrupole to the magnetic dipole amplitudes, REM(q2), as a function of the
momentum transfer q. A non-zero REM arises due to deformation in the nucleon and/or
∆ and it is attributed to different mechanisms in the various models: in quark models
the deformation arises due to the colour-magnetic tensor force whereas in ’cloudy’ baryon
models due to the meson exchange currents.

Let us first consider the equal-time correlators [3],

CH
Γ (r, t) =

∫
d3r′ 〈H|ρ̂u

Γ(r′, t)ρ̂d
Γ(r′ + r, t)|H〉 , (1)

with ρ̂u
Γ(r, t) given by the normal order product : ū(r, t)Γu(r, t) :. For Γ = γ0 and Γ = 1 we

obtain, in the nonrelativistic limit, the charge and matter density respectively. For Γ = γ5

we obtain the pseudoscalar density which we will compare to bag model predictions. The
matrix elements of two-density correlators are shown schematically in Fig. 1. The advan-
tage of using density correlators is that they are gauge-invariant unlike Bethe-Salpeter
amplitudes. For baryon wave functions three-density correlators are needed. Here we will
only show results for the one-particle density obtained after integrating the wave function
over one relative distance. The diagram involved is shown in the lower part of Fig. 1.
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Figure 1. Equal-time correlator for a
meson (upper) and a baryon (lower).

Figure 2. Time evolution to ground state for
the rho meson at κ = 0.153.

Since the spectroscopic quadrupole moment of the nucleon vanishes in order to deter-
mine any possible deformation we evaluate the N to ∆ electromagnetic transition form
factors. We calculate the three-point correlation functions [4] 〈G∆jµN

σ (t2, t;p
′,p; Γ)〉 and

〈GNjµ∆
σ (t2, t;p

′,p; Γ)〉 and consider the following ratio [5]

Rσ(t2, t;p
′,p ; Γ; µ) =

[〈G∆jµN
σ (t2, t;p

′,p; Γ)〉 〈GNjµ∆
σ (t2, t;−p,−p ′; Γ†)〉

〈−gijG
∆∆
ij (t2,p ′; Γ4)〉 〈GNN(t2,−p; Γ4)〉

]1/2

=⇒
t2 − t � 1, t � 1

(
EN(p) + MN

2EN(p)

)1/2(E ′
∆(p′) + MN

2E ′
∆(p′)

)1/2

R̄σ(p ′,p ; Γ; µ) (2)

from which the transition form factors can be extracted. The index σ is the Lorentz
index for a spin- 3

2
field, jµ(x), is the lattice conserved electromagnetic current inserted

at time t, EN(p) and E ′
∆(p′) are the energies of the nucleon and the ∆ respectively and

t2, the time location of the sink, is varied to identify the ground state. We use projection
matrices Γj = 1/2

(
σj 0
0 0

)
and Γ0 = 1/2

(
I 0
0 0

)
as in ref. [5].

2. Results

We have analysed 220 quenched configurations at β = 6.0 for a lattice of size 163×32 at
κ = 0.15, 0.153, 0.154, 0.155 which give ratio of pion to rho mass of 0.88, 0.84, 0.78, 0.70
respectively. Using the standard definition of the naive quark mass, 2mqa = (1/κ−1/κc),
where κc is the value of κ at which the pion becomes massless, we find mq ∼ 300, 170, 130
and 85 Mev respectively. We used the value of the string tension to set the physical scale
obtaining for the inverse lattice spacing a−1 ∼ 1.94 GeV. The density insertions are taken
at t = T/4 = 8a. To check that this time interval is long enough to extract the physical
hadronic ground state we computed the density-density correlators for varying values of
the insertion time t. Fig. 2 shows the results for the rho correlators which converge when
t > 6a. Moreover, we note a clear deformation (ratio Cρ

γ0
(x, 0, 0)/Cρ

γ0
(0, 0, z) 6= 1) which

remains approximately the same as early as t = 3a even though the z- and x-profiles
change appreciably showing that the deformation is a robust, physical property of the rho
meson in its ground state as well as its low-lying excited states.

The dependence of hadron wave functions on the quark mass is displayed in Fig. 3
where we plot the density-density correlators at various κ values for the pion, the rho, the
nucleon and the ∆+ normalized to unity. The size of the nucleon and ∆ wave functions
do not change for naive quark mass smaller than 130 MeV. The rho wave function shows
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Figure 3. Density-density correlators as a
function of the quark mass.

Figure 4. Comparison of charge (a) and
matter (b) densities at κ = 0.153.

Figure 5. The pseudoscalar density for
the pion at κ = 0.153, 0.154 and 0.155
with fits to r2(a+ br2 + cr4) exp(−mr).

Figure 6. Pseudoscalar density for the pion
(upper), the rho (middle) and the nucleon
(lower) at κ = 0.153. Fits as in Fig. 5.

the largest variation with the quark mass. In Fig.4 we compare the matter and charge
densities at κ = 0.153. We find that the matter density falls off more rapidly than the
charge density and it has the same shape for all four hadrons.

The pseudoscalar density for the pion is shown in Fig. 5 for mπ/mρ = 0.84, 0.78 and
0.70. In Fig. 6 it is compared with that for the rho and the nucleon at mπ/mρ = 0.84. The
bag model predicts that the integral

∫
d3rCH

γ5
(r) is zero [6]. A reasonable fit is obtained

by an exponential times a polynomial ansatz. The long tail of the data and the integral
of the fitted ansatz both favor a non-zero integral. However a careful extrapolation to
the continuum limit (using large volumes) is required for this quantity, especially with
Wilson fermions as used here.

The rho deformation seen in Fig. 2 can be made more quantitative by analysing the
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Figure 7. Decomposition of Cγ0 for the rho into
angular momentum part L = 0 and L = 2.

As shown in Fig. 7, a good descrip-
tion of the rho correlator, is obtained
by taking φ1(r) = A exp(−m1r)
and φ2(r) = Br2 exp(−m2r). Us-
ing the values extracted from the fits
and neglecting B2 terms we find for
the deformation δ ≡ (3/4)(〈3z2 −
r2〉/〈r2〉) ∼ 0.01 with an error of
about 80% which mainly arises from
the poor determination of the coeffi-
cient of the L = 2 state. A direct de-
termination of the quadrupole mo-
ment from the rho correlator yields
δ = 0.03± 0.01 in reasonable agree-
ment with the value obtained from
the angular decomposition.

density-density correlator into a dominant L = 0 state and a suppressed L = 2 [7]:

< ρj(0)|ρ̂γ0(r)ρ̂γ0(0)|ρj(0) >= φ1(r) +
(3x2

j − r2)

3r2
φ2(r) (3)

where |ρj(0) > is a zero momentum state with polarization j.
First lattice results for the ratio of the electric quadrupole to magnetic dipole ampli-

tudes, REM , for both quenched and for two dynamical Wilson fermions are obtained at
the smallest allowed lattice momentum, q = (2π/Ls, 0, 0), where Ls is the spatial length
of the lattice. At q2 = 0.54 GeV2 for the unquenched theory using the SESAM configu-
rations [8] we find in the chiral limit REM ∼ (−3.7± 0.5)%. For q2 = 0.15 GeV2 in the
quenched theory on a lattice of size 323 × 64 at β = 6.0 we find REM ∼ (−3.0 ± 0.3)%.
We used the nucleon mass to set the physical scale. Finite lattice spacing effects on the
REM ratio can be significant and are currently under investigation. The finite volume
dependence on REM is also under study.
3. Conclusions

We have presented a gauge-invariant determination of hadron profiles in the quenched
approximation. We have found that the rho wave function shows the strongest dependence
on the quark mass whereas the nucleon and ∆ the weakest. We have established that the
rho is deformed with deformation which increases as we approach the chiral limit, whereas
the ∆+ has no statistically significant deformation. The matter density is similar for all
four hadrons and falls off more rapidly than the charge density. Using state-of-the-art
lattice techniques the phenomenologically important REM has been extracted for two q2

values and found to be consistent with experimental measurements.
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