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Gauge-invariant spatial correlations between two and three quarks inside a hadron are measured within
quenched and unquenched QCD. These correlators provide information on the shape and multipole moments
of the pion, the rho, the nucleon and the ∆.

1. Introduction

Gauge-invariant two- and three-density corre-
lators inside a hadron reduce to the square of the
wave function in the non-relativistic limit, yield-
ing detailed information on hadron structure.
Quark spatial distributions, hadronic shapes,
charge radii, etc., can be extracted. An interest-
ing question is whether the nucleon is deformed.
Strong evidence for deformation in the nucleon
and/or ∆ is provided by recent accurate mea-
surements [1] in photoprodution experiments on
the nucleon. One can compare with the experi-
mental results by calculating the N to ∆+ tran-
sition form factors [2]. Moreover, the ∆+ defor-
mation can be directly obtained from the wave
function. The nucleon, however, has zero spec-
troscopic quadrupole moment, since it is a spin
1/2 particle. This implies that any deformation
that intrinsically may be present for a given back-
ground gauge field will average out to zero in the
gauge configuration ensemble.

2. Observables

In this work we consider equal-time correlators.
For a meson we calculate the matrix element

CΓ(r, t) =
∫

d3r′ 〈M |ρu(r′, t)ρd(r′ + r, t)|M〉 (1)

with ρu
Γ(r, t) =: ū(r, t)Γu(r, t) :. We take Γ =

γ0 for the normal ordered charge density oper-
ator, and 1 for the matter density. In the non-
relativistic limit this allows to extract respectively
∗Talk presented by C. Alexandrou.

the charge and matter density distributions. Un-
like Bethe-Salpeter amplitudes, these correlators
are gauge-invariant. Here we take the u−and d−
quarks to be degenerate in mass.

The form factors F (q2) at low momenta can
be extracted from the Fourier transform of the
charge density-density correlator [3]

Q(q2) =
∫ ∞

0

d3r exp (iq.r) Cγ0(r, t)/2mπ

→ (E + mπ)2

4Emπ
F (q2)2 . (2)

For baryons the charge distribution is obtained
by using three density insertions. This involves
two relative distances and it is computed effi-
ciently by using FFT. The diagrams involved are
shown in Fig. 2. The top right diagram requires
the all-to-all propagator [4] and will not be con-
sidered here. We check that the contribution of
this diagram is small by comparing the integrated
one-particle density

∫
d3r2C(r1, r2, t) with the

two-density correlator,
∫

d3r′ 〈h|ρd(r′, t)ρu(r′ +
r1, t)|h〉, shown by the lower diagram of Fig. 2.
3. Results

We first discuss the results obtained in the
quenched approximation at β = 6.0 for a lattice of
size 163 × 32. The parameters of the simulation
for both quenched and unquenched calculations
are summarized in the following Table.

The charge and matter density distributions for
the pion and the rho mesons are shown in Fig. 2 at
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Figure 1. Three-density correlator for a baryon
where all the insertions are taken at equal times
t. t and T/2 − t are taken large enough to filter
out the excited baryonic states.

Quenched Unquenched(from [5])

κ mπ/mρ #confs. κsea mπ/mρ #confs.

0.153 0.81 220 0.156 0.83 150
0.154 0.78 220 0.157 0.76 200

κ = 0.154. We find that the charge distribution
is broader than the matter distribution, in agree-
ment with Ref. [6]. The matter distributions for
the pion and the rho are almost identical, but the
density distribution is considerably broader for
the rho. As seen in Fig. 3, the nucleon and the
∆+ have very similar matter distributions to the
rho meson, whereas larger variations are visible
in the charge density distributions.

In Fig. 4 we show the pion form factor which,
being the simplest, can be reliably extracted from
our set of data. Its low momentum behaviour
is well described by the vector dominance re-
sult F (q2) ∼ 1/(1 + q2/m2). We observe a
weak dependence on κ obtaining 0.57, 0.59 and
0.61 GeV at κ = 0.153, 0.1554 and 0.155 respec-
tively. Extrapolating linearly in m2

π we obtain
m ∼ 0.65 GeV within 15% of the rho meson mass.

Hadron deformation can be investigated by
evaluating the root mean squared (rms) radius
along the spin axis and perpendicular to it. We
show the charge rms radii in Fig. 5 as a function
of the quark mass. The pion, having equal rms
radii, is spherical whereas for the rho the asymme-
try between the longitudinal and transverse radii
increases as we approach the chiral limit. A reli-
able extrapolation to the chiral limit needs lighter
quarks and a larger lattice to contain the rho. A
similar analysis for the nucleon shows that it is

Figure 2. Charge and matter density distribu-
tions at κ = 0.154 for the pion and the rho.

Figure 3. Charge and matter density distribu-
tions at κ = 0.153.

spherical as expected, whereas the ∆+ shows no
statistically significant deformation [4]. The rms
radii computed from the matter distribution show
no such deformation also in the case of the rho.

We now compare our quenched results for
the charge correlator with those obtained us-
ing two degenerate flavors of Wilson fermions,
with similar lattice spacing and mπ/mρ values.
Fig. 6 shows that unquenching leaves the pion
unchanged, whereas the rho, the nucleon and the
∆+ become broader. The asymmetry in the rho
increases as seen by comparing the longitudinal
and transverse radii in Fig. 5. The ∆+ shows a
small asymmetry which points to pion cloud con-
tributions to the deformation.

The three-density charge correlator was com-
puted in the quenched approximation using 30
configurations at κ = 0.15 and 0.154. More de-
tailed information on hadron structure can be ex-
tracted from this correlator. As an example we
show in Fig. 7 the u- and d- quark spatial dis-
tributions. The systematically broader d-quark
distribution gives rise to a negative neutron rms
charge radius.
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Figure 4. 1/F (q2) versus q2 at κ = 0.154. The
solid line is a fit to the form (1 + q2/m2).

Figure 5. 〈z2〉 and 〈(x2 +y2)/2〉 vs the pion mass
squared. The lines are linear fits to the quenched
data. The empty circles show full QCD results.

4. Conclusions

We have presented a gauge-invariant determi-
nation of hadron charge and matter density dis-
tributions. The main conclusions from this study
are the following: 1) The matter density distri-
bution is very similar for the π, ρ, nucleon and
∆+, unlike the charge density which is narrower
for the pion than for the rest. In all cases the
charge density distribution is broader than the
matter density distribution. 2) Vector dominance
provides a good description of the pion form fac-
tor at low momenta. 3) Unquenching leaves the
pion size unchanged but the rho, the nucleon and
∆+ become broader. 4) In the quenched approxi-
mation the rho in the 0-spin projection is prolate
whereas the ∆+ has no statistically significant de-
formation. 5) Unquenching increases the rho de-

Figure 6. (a) Density-density correlators, Cγ0(r),
for the pion, the rho, the nucleon and the ∆+ at
κ = 0.154 vs |r|. (b) Same as (a) but with two
dynamical quark flavors at κ = 0.157. Errors bars
are omitted for clarity.

Figure 7. The u− and d− distributions inside the
neutron for κ = 0.15 and 0.154.

formation and produces a small deformation for
the ∆+ with the +3/2 spin state being slightly
oblate. 6) The d-quark spatial distribution in the
neutron extracted from the three density corre-
lator is broader than that of the u-quark, thus
accounting for the negative rms charge radius of
the neutron.
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