207 research outputs found
Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland
Studies on soil respiration in mountain forests are rather scarce compared to their broad distribution. Therefore, we investigated daily, seasonal and annual soil respiration rates in a mixed forest (Lägeren), located at about 700m in the Swiss Jura mountains, during 2years (2006 and 2007). Soil respiration (SR) was measured continuously with high temporal resolution (half-hourly) at one single point (SRautomated) and periodically with high spatial resolution (SRmanual) at 16 plots within the study site. Both, SRautomated and SRmanual showed a similar seasonal cycle. SR strongly depended on soil temperature in 2007 (R 2=0.82-0.92), but less so in 2006 (R 2=0.56-0.76) when SR was water limited during a summer drought. Including soil moisture improved the fit of the 2006 model significantly (R 2=0.78-0.97). Total annual SR for the study site was estimated as 869g C m−2year−1 for 2006 and as 907g C m−2year−1 for 2007 (uncertainty <10% at the 95% confidence interval, determined by bootstrapping). Selected environmental conditions were assessed in more detail: (1) Rapid, but contrasting changes of SR were found after summer rainfall. Depending on soil moisture at pre-rain conditions, summer rain could either cause a pulse of CO2 from the soil or an abrupt decrease of SRautomated due to water logging of soil pores. (2) Two contrasting winter seasons resulted in SR being about 60-70% (31.2-44.6g C m−2) higher during a mild winter (2007) compared to a harsh winter (2006). (3) Analysing SR for selected periods on a diurnal scale revealed a counter-clockwise hysteresis with soil surface temperatures. This indication of a time-lagged response of SR to temperature was further supported by a very strong relationship (R 2=0.86-0.90) of SR to soil temperature with a time-lag of 2-4
Representative estimates of soil and ecosystem respiration in an old beech forest
Respiration has been proposed to be the main determinant of the carbon balance in European forests and is thus essential for our understanding of the carbon cycle. However, the choice of experimental design strongly affects estimates of annual respiration and of the contribution of soil respiration to total ecosystem respiration. In a detailed study of ecosystem and soil respiration fluxes in an old unmanaged deciduous forest in Central Germany over 3years (2000-2002), we combined soil chamber and eddy covariance measurements to obtain a comprehensive picture of respiration in this forest. The closed portable chambers offered to investigate spatial variability of soil respiration and its controls while the eddy covariance system offered continuous measurements of ecosystem respiration. Over the year, both fluxes were mainly correlated with temperature. However, when soil moisture sank below 23vol.% in the upper 6cm, water limitations also became apparent. The temporal resolution of the eddy covariance system revealed that relatively high respiration rates occurred during budbreak due to increased metabolic activity and after leaf fall because of increased decomposition. Spatial variability in soil respiration rates was large and correlated with fine root biomass (r 2 = 0.56) resulting in estimates of annual efflux varying across plots from 730 to 1,258 (mean 898) g C m−2 year−1. Power function calculations showed that achieving a precision in the soil respiration estimate of 20% of the full population mean at a confidence level of 95%, requires about eight sampling locations. Our results can be used as guidelines to improve the representativeness of soil respiration measurements by nested sampling designs, being applied in long-term and large-scale carbon sequestration projects such as FLUXNET and CarboEurop
Influence of Nutrient Availability, Stand Age, and Canopy Structure on Isoprene Flux in a Eucalyptus saligna Experimental Forest
Eucalyptus plantations occupy approximately 10 million ha of land in the tropics and, increasingly, afforestation and reforestation projects are relying on this genus to provide rapid occupation of degraded sites, large quantities of high-quality wood products, and high rates of carbon sequestration. Members of the genus Eucalyptus are also very high emitters of isoprene, the dominant volatile organic compound emitted by trees in tropical ecosystems, which significantly influences the oxidative capacity of the atmosphere. While fertilization growth response of these trees has been intensively studied, little is known about how fertilization and tree age alter isoprene production from plantations of these trees. Here we examined the effects of fertilization and tree age on leaf-level isoprene flux from 2- and 6-year-old trees in a Eucalyptus saligna experimental forest in Hawaii. Leaf-level emission at a given canopy height did not differ between fertilized and unfertilized 6-year-old trees likely because leaf nitrogen content did not vary with fertilization. Across treatments, however, the standardized emission rate of isoprene (emission at a standard light and temperature) followed patterns of leaf N content and declined with canopy depth. Although leaf nitrogen content was similar between 2-year and 6-year fertilized trees, leaf-level emission rates declined with stand age. Surprisingly, despite differences in stand leaf area and leaf area distribution, modeled canopy-level isoprene flux was similar across stands varying in fertilization and tree age. Model results suggest that leaf area index was high enough in all treatments to absorb most of the light penetrating the canopy, leading to similar canopy flux rates despite the very different sized canopies
Estimation of Oil Palm Total Carbon Fluxes Using Remote Sensing
Net primary production (NPP) is one of the approaches used to estimate the amount of carbon sequestration by plants. This research aims to estimate the total carbon flux exchanged from different ages of oil palm using remote sensing. The study site was at the PTPN VI Batang Hari, Jambi, Sumatra, Indonesia. The amount of carbon sequestration by oil palm plantations at PTPN VI Batang Hari, Jambi can be estimated using remote sensing based on the light use efficiency (LUE) model. The results showed that the oil palm age affects the amount of carbon sequestrated. The lowest Net primary production value was found at one year of planting 4.28 gCm-2day-1, and the highest was 9.38 gCm-2day-1 at 20 years of planting. The model LUE output was validated using Eddy covariance data and the results showed a low error and a high accuracy rate with RMSE = 0.05 gCMJ-1, R2 = 92%, and p-value = 0.04. We concluded that the LUE model can be used with high accuracy to estimate the amount of carbon absorption of oil palm when direct measurement is unavailable
Selected breakpoints of net forest carbon uptake at four eddy-covariance sites
Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.Peer reviewe
Micrometeorological Method in Determining Plant Capacity to Absorb Pollutant: Oil Palm Case Study
The vegetation canopy's height and characteristics directly affect the turbulence that controls the exchange of mass and energy between the vegetation and the surrounding atmosphere. Turbulence also controls the momentum transfer towards the mass-carrying plant canopy and the accompanying atmospheric properties so that vegetation can contribute to pollutant deposition. This study aims to estimate the canopy capacity of oil palms to absorb pollutants based on their momentum transfer, the influence of atmospheric stability dynamics, and rainy and dry periods upon absorbed pollutants from PTPN VI in Jambi province for the period of January to December 2015 used micrometeorological observation data. The results showed that the dry deposition capacity value at the stable, neutral, and unstable atmospheric conditions were 2.06 x 10-3 kg/m2, 3.50 x 10-3 kg/m2, and 4.35 x 10-3 kg/m2, respectively. The stable or unstable conditions affected the momentum transfer through decreasing or increasing turbulence. In stable conditions, the cooling of the atmosphere impacts the turbulence to be restrained. The result also showed that the dry deposition capacity during the dry and rainy periods were 4.5 x 10-3 kg/m2 and 2.9 x 10-3 kg/m2, respectively. Further, atmospheric conditions tended to be unstable during the dry period, while the rainy period tended to be stable. This research showed that the momentum transfer method can estimate gas type pollutants by vegetation
A Modeling Approach to Investigate Drivers, Variability and Uncertainties in O2 Fluxes and the O2 : CO2 Exchange Ratios in a Temperate Forest
The O2 : CO2 exchange ratio (ER) between terrestrial ecosystems and the atmosphere is a key parameter for partitioning global ocean and land carbon fluxes. The long-term terrestrial ER is considered to be close to 1.10 moles of O2 consumed per mole of CO2 produced. Due to the technical challenge in measuring directly the ER of entire terrestrial ecosystems (EReco), little is known about the variations in ER at the hourly and seasonal scales as well as how different components contribute to EReco. In this modeling study, we explore the variability and drivers of EReco and evaluate the hypothetical uncertainty in determining ecosystem O2 fluxes based on current instrument precision. We adapted the one-dimensional, multi-layer atmosphere-biosphere gas exchange model, CANVEG, to simulate hourly EReco from modeled O2 and CO2 fluxes in a temperate beech forest in Germany. We found that the annual mean EReco ranged from 1.06 to 1.12 mol mol-1 within the five years’ study period. Hourly EReco showed strong variations over diel and seasonal cycles and within the vertical canopy profile. Determination of ER from O2 and CO2 mole fractions in air above and within the canopy (ERconc) varied between 1.115 and 1.15 mol mol-1. CANVEG simulations also indicated that ecosystem O2 fluxes could be derived using the flux-gradient method in combination with measurements of vertical scalar gradients and CO2, sensible heat or latent heat fluxes obtained with the eddy covariance technique. Owing to measurement uncertainties, however, the uncertainty in estimated O2 fluxes derived with the flux-gradient approach could be as high as 15 μmol m-2 s-1, which represented the 90 % quantile of the uncertainty in hourly data with a high-accuracy instrument. We also demonstrated that O2 fluxes can be used to partition net CO2 exchange fluxes into their component fluxes of photosynthesis and respiration, if EReco is known. The uncertainty of the partitioned gross assimilation ranged from 1.43 to 4.88 μmol m-2 s-1 assuming a measurement uncertainty of 0.1 or 2.5 μmol m-2 s-1 for net ecosystem CO2 exchange and from 0.1 to 15 μmol m-2 s-1 for net ecosystem O2 exchange, respectively. Our analysis suggests that O2 measurements at ecosystem scale have the potential for partitioning net CO2 fluxes into their component fluxes, but further improvement in instrument precision is needed.</p
Soil H218O labelling reveals the effect of drought on C18OO fluxes to the atmosphere
Concurrent and continuous measurements of the 18O/16O ratio in CO2 and H2Ov after a H2 18O labelling showed that drought reduces the 18O-equilibrium between CO2 and H2O at the shoot leve
- …