1,822 research outputs found

    Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice

    Get PDF
    Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice

    ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment has measured ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV using the dimuon and dielectron decay channels. The ϕ\phi meson is measured in the forward (backward) dd-going (Au-going) direction, 1.2<y<2.21.2<y<2.2 (2.2<y<1.2-2.2<y<-1.2) in the transverse-momentum (pTp_T) range from 1--7 GeV/cc, and at midrapidity y<0.35|y|<0.35 in the pTp_T range below 7 GeV/cc. The ϕ\phi meson invariant yields and nuclear-modification factors as a function of pTp_T, rapidity, and centrality are reported. An enhancement of ϕ\phi meson production is observed in the Au-going direction, while suppression is seen in the dd-going direction, and no modification is observed at midrapidity relative to the yield in pp++pp collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version accepted for publication in Phys. Rev. C. Data tables for the points plotted in the figures are given in the paper itsel

    Cross Section and Transverse Single-Spin Asymmetry of η\eta Mesons in p+pp^{\uparrow}+p Collisions at s=200\sqrt{s}=200 GeV at Forward Rapidity

    Full text link
    We present a measurement of the cross section and transverse single-spin asymmetry (ANA_N) for η\eta mesons at large pseudorapidity from s=200\sqrt{s}=200~GeV p+pp^{\uparrow}+p collisions. The measured cross section for 0.5<pT<5.00.5<p_T<5.0~GeV/cc and 3.0<η<3.83.0<|\eta|<3.8 is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries ANA_N have been measured as a function of Feynman-xx (xFx_F) from 0.2<xF<0.70.2<|x_{F}|<0.7, as well as transverse momentum (pTp_T) from 1.0<pT<4.51.0<p_T<4.5~GeV/cc. The asymmetry averaged over positive xFx_F is AN=0.061±0.014\langle{A_{N}}\rangle=0.061{\pm}0.014. The results are consistent with prior transverse single-spin measurements of forward η\eta and π0\pi^{0} mesons at various energies in overlapping xFx_F ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in p+pp^{\uparrow}+p collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version accepted by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be)publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurements of elliptic and triangular flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present the first measurement of elliptic (v2v_2) and triangular (v3v_3) flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in 3^{3}He++Au and in pp++pp collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the 3^{3}He++Au system. The collective behavior is quantified in terms of elliptic v2v_2 and triangular v3v_3 anisotropy coefficients measured with respect to their corresponding event planes. The v2v_2 values are comparable to those previously measured in dd++Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three 3^{3}He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted for publication by Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from sNN=7.7\sqrt{s_{NN}}=7.7 to 200 GeV

    Full text link
    Measurements of midrapidity charged particle multiplicity distributions, dNch/dηdN_{\rm ch}/d\eta, and midrapidity transverse-energy distributions, dET/dηdE_T/d\eta, are presented for a variety of collision systems and energies. Included are distributions for Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu++Cu collisions at sNN=200\sqrt{s_{_{NN}}}=200 and 62.4 GeV, Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, U++U collisions at sNN=193\sqrt{s_{_{NN}}}=193 GeV, dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, NpartN_{\rm part}, and the number of constituent quark participants, NqpN_{q{\rm p}}. For all AA++AA collisions down to sNN=7.7\sqrt{s_{_{NN}}}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with NqpN_{q{\rm p}} than scaling with NpartN_{\rm part}. Also presented are estimates of the Bjorken energy density, εBJ\varepsilon_{\rm BJ}, and the ratio of dET/dηdE_T/d\eta to dNch/dηdN_{\rm ch}/d\eta, the latter of which is seen to be constant as a function of centrality for all systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    Get PDF
    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model
    corecore