169 research outputs found

    Binding of Extracellular Maspin to 1 Integrins Inhibits Vascular Smooth Muscle Cell Migration

    Get PDF
    Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the ß1 integrin subunit, and subsequently both a3ß1 and a5ß1, but not avß3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to a5ß1 was confirmed using a recombinant a5ß1-Fc fusion protein. Using conformation-dependent anti-ß1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of a5ß1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human a5 integrin, but not those lacking a5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment

    Acidic Extracellular pH Promotes Activation of Integrin Ξ±vΞ²3

    Get PDF
    Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin [alpha]v[beta]3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the [alpha]v[beta]3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin [alpha]v[beta]3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Award Number T32EB006348)Massachusetts Institute of Technology (Collamore-Rogers Fellowship)National Institutes of Health (U.S.) (NIH Cell Migration Consortium Grant U54-GM069668)National Science Foundation (U.S.) (CAREER Award)Singapore-MIT Alliance for Research and Technology (BioSystem and Micromechanics (BioSyM) Interdisciplinary Research Group

    Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines

    Get PDF
    The extracellular matrix glycoprotein tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al (1996) Br J Cancer 74: 999-1004). To define regulation of TN further and investigate its function in ovarian cancer, a range of cell line models were studied. Concentrations of secreted TN in media from cultures of ovarian fibroblast cell lines were at least 100-fold greater than from carcinoma cell lines. Evidence for paracrine regulation of TN secretion was obtained by co-culture of carcinoma cells with fibroblast cells wherein secretion into the media was greater than from fibroblasts alone. Transforming growth factor (TGF)- beta 1, insulin-like growth factor (IGF)-II and progesterone all stimulated TN secretion while human choriogonadotropin (hCG), follicle-stimulating hormone (FSH) and gamma-interferon inhibited secretion. TGF-beta 1 produced the greatest stimulation of TN in cultured fibroblasts and its cc-expression with TN was examined in primary ovarian tumours, There was a significant association between the presence of moderate-strong expression of TN and TGF-beta 1. Evidence for TN having a functional role in ovarian carcinoma was obtained from adhesion and migration assays. The PE01, PE04, SKOV-3 and 59M cell lines all demonstrated marked adhesion to plastic coated with TN relative to the control protein bovine serum albumin (BSA) and expressed alpha 2 beta 1 and alpha 3 beta 1 integrins, The SKOV-3 cell line migrated more rapidly through TN than through BSA indicating that TN can facilitate migration of ovarian carcinoma cells

    Understanding and applying pharmacometric modelling and simulation in clinical practice and research.

    Get PDF
    Understanding the dose-concentration-effect relationship is a fundamental component of clinical pharmacology. Interpreting data arising from observations of this relationship requires the use of mathematical models; i.e. pharmacokinetic (PK) models to describe the relationship between dose and concentration and pharmacodynamic (PD) models describing the relationship between concentration and effect. Drug development requires several iterations of pharmacometric model-informed learning and confirming. This includes modelling to understand the dose-response in preclinical studies, deriving a safe dose for first-in-man, and the overall analysis of Phase I/II data to optimise the dose for safety and efficacy in Phase III pivotal trials. However, drug development is not the boundary at which PKPD understanding and application stops. PKPD concepts will be useful to anyone involved in the prescribing and administration of medicines for purposes such as determining off-label dosing in special populations, individualising dosing based on a measured biomarker (personalised medicine) and in determining whether lack of efficacy or unexpected toxicity maybe solved by adjusting the dose rather than the drug. In clinical investigator-led study design, PKPD can be used to ensure the optimal dose is used, and crucially to define the expected effect size, thereby ensuring power calculations are based on sound prior information. In the clinical setting the most likely people to hold sufficient expertise to advise on PKPD matters will be the pharmacists and clinical pharmacologists. This paper reviews fundamental PKPD principles and provides some real-world examples of PKPD use in clinical practice and applied clinical research

    Regulatory role of CD8(+ )T lymphocytes in bone marrow eosinophilopoiesis

    Get PDF
    BACKGROUND: There is a growing body of evidence to suggest that CD8(+ )T lymphocytes contribute to local allergen-induced eosinophilic inflammation. Since bone marrow (BM) responses are intricately involved in the induction of airway eosinophilia, we hypothesized that CD8(+ )T lymphocytes, as well as CD4(+ )T lymphocytes, may be involved in this process. METHODS: Several approaches were utilized. Firstly, mice overexpressing interleukin-5 (IL-5) in CD3(+ )T lymphocytes (NJ.1638; CD3(IL-5+ )mice) were bred with gene knockout mice lacking either CD4(+ )T lymphocytes (CD4(-/-)) or CD8(+ )T lymphocytes (CD8(-/-)) to produce CD3(IL-5+ )knockout mice deficient in CD4(+ )T lymphocytes (CD3(IL-5+)/CD4(-/-)) and CD8(+ )T lymphocytes (CD3(IL-5+)/CD8(-/-)), respectively. Secondly, CD3(+), CD4(+ )and CD8(+ )T lymphocytes from naΓ―ve CD3(IL-5+ )and C57BL/6 mice were adoptively transferred to immunodeficient SCID-bg mice to determine their effect on BM eosinophilia. Thirdly, CD3(IL-5+), CD3(IL-5+)/CD8(-/- )and CD3(IL-5+)/CD4(-/- )mice were sensitized and allergen challenged. Bone marrow and blood samples were collected in all experiments. RESULTS: The number of BM eosinophils was significantly reduced in CD3(IL-5+)/CD8(-/- )mice compared to CD3(IL-5+ )mice and CD3(IL-5+)/CD4(-/- )mice. Serum IL-5 was significantly higher in CD3(IL-5+)/CD4(-/- )mice compared to CD3(IL-5+ )mice but there was no difference in serum IL-5 between CD3(IL-5+)/CD4(-/- )and CD3(IL-5+)/CD8(-/- )mice. Adoptive transfer of CD8(+), but not CD4(+ )T lymphocytes from naΓ―ve CD3(IL-5+ )and C57BL/6 mice restored BM eosinophilia in immunodeficient SCID-bg mice. Additionally, allergen challenged CD3(IL-5+)/CD8(-/- )mice developed lower numbers of BM eosinophils compared to CD3(IL-5+ )mice and CD3(IL-5+)/CD4(-/- )mice. CONCLUSION: This study shows that CD8(+ )T lymphocytes are intricately involved in the regulation of BM eosinophilopoiesis, both in non-sensitized as well as sensitized and allergen challenged mice

    The SAMI Galaxy Survey: Early Data Release

    Get PDF
    We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel

    The SAMI Galaxy Survey: Early Data Release

    Get PDF
    We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel

    An Alternate STAT6-Independent Pathway Promotes Eosinophil Influx into Blood during Allergic Airway Inflammation

    Get PDF
    Enhanced eosinophil responses have critical roles in the development of allergic diseases. IL-5 regulates the maturation, migration and survival of eosinophils, and IL-5 and eotaxins mediate the trafficking and activation of eosinophils in inflamed tissues. CD4⁺ Th2 cells are the main producers of IL-5 and other cells such as NK also release this cytokine. Although multiple signalling pathways may be involved, STAT6 critically regulates the differentiation and cytokine production of Th2 cells and the expression of eotaxins. Nevertheless, the mechanisms that mediate different parts of the eosinophilic inflammatory process in different tissues in allergic airway diseases remain unclear. Furthermore, the mechanisms at play may vary depending on the context of inflammation and microenvironment of the involved tissues. We employed a model of allergic airway disease in wild type and STAT6-deficient mice to explore the roles of STAT6 and IL-5 in the development of eosinophilic inflammation in this context. Quantitative PCR and ELISA were used to examine IL-5, eotaxins levels in serum and lungs. Eosinophils in lung, peripheral blood and bone marrow were characterized by morphological properties. CD4⁺ T cell and NK cells were identified by flow cytometry. Antibodies were used to deplete CD4⁺ and NK cells. We showed that STAT6 is indispensible for eosinophilic lung inflammation and the induction of eotaxin-1 and -2 during allergic airway inflammation. In the absence of these chemokines eosinophils are not attracted into lung and accumulate in peripheral blood. We also demonstrate the existence of an alternate STAT6-independent pathway of IL-5 production by CD4⁺ and NK cells that mediates the development of eosinophils in bone marrow and their subsequent movement into the circulation

    A novel transcriptional signature identifies T-cell infiltration in high-risk paediatric cancer.

    Get PDF
    BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.Chelsea Mayoh, Andrew J. Gifford, Rachael Terry, Loretta M. S. Lau, Marie Wong, Padmashree Rao, Tyler Shai, Hee, Federica Saletta, Dong, Anh Khuong, Quang, Vicky Qin, Marion K. Mateos, Deborah Meyran, Katherine E. Miller, Aysen Yuksel, Emily V. A. Mould, Rachel Bowen, James, Dinisha Govender, Akanksha Senapati, Nataliya Zhukova, Natacha Omer, Hetal Dholaria, Frank Alvaro, Heather Tapp, Yonatan Diamond, Luciano Dalla Pozza, Andrew S. Moore, Wayne Nicholls, Nicholas G. Gottardo, Geoffrey McCowage, Jordan R. Hansford, Seong, Lin Khaw, Paul J. Wood, Daniel Catchpoole, Catherine E. Cottrell, Elaine R. Mardis, Glenn M. Marshall, Vanessa Tyrrell, Michelle Haber, David S. Ziegler, Orazio Vittorio, Joseph A. Trapani, Mark J. Cowley, Paul J. Neeson, and Paul G. Eker

    Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    Get PDF
    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-Ξ³ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen
    • …
    corecore