77 research outputs found

    Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old.</p> <p>The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis</p> <p>Methods</p> <p>The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts.</p> <p>Results</p> <p>By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same.</p> <p>Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus.</p> <p>Conclusion</p> <p>The results of this study suggest that: a) cortical NFT represent the key variable in AD neuropathology; b) the neuropathologic profile of AD subjects is complex, however, c) ANNs can analyze neuropathologic features and differentiate AD cases from controls.</p

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    Caspase activation precedes and leads to tangles

    Get PDF
    Studies of post-mortem tissue have shown that the location of fibrillar tau deposits, called neurofibrillary tangles (NFT), matches closely with regions of massive neuronal death(1,2), severe cytological abnormalities(3), and markers of caspase activation and apoptosis(4–6), leading to the idea that tangles cause neurodegeneration in Alzheimer’s disease and tau-related frontotemporal dementia. However, using in vivo multiphoton imaging to observe tangles and activation of executioner caspases in living tau transgenic mice (Tg4510 strain), we find the opposite: caspase activation occurs first, and precedes tangle formation by hours to days. New tangles form within a day. After a new tangle forms, the neuron remains alive and caspase activity seems to be suppressed. Similarly, introduction of wild-type 4-repeat tau (Tau-4R) into wild-type animals triggered caspase activation, tau truncation and tau aggregation. Adeno-associated virus-mediated expression of a construct mimicking caspase-cleaved tau into wild-type mice led to the appearance of intracellular aggregates, tangle-related conformational- and phospho-epitopes, and the recruitment of full-length endogenous tau to the aggregates. On the basis of these data, we propose a new model in which caspase activation cleaves tau to initiate tangle formation, then truncated tau recruits normal tau to misfold and form tangles. Because tangle-bearing neurons are long-lived, we suggest that tangles are ‘off pathway’ to acute neuronal death. Soluble tau species, rather than fibrillar tau, may be the critical toxic moiety underlying neurodegeneration

    Heterologous Amyloid Seeding: Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease

    Get PDF
    Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-β peptide (Aβ) production via β and γ secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Aβ in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Aβ fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE575-614) is an exposed amphiphilic α-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) β-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE586-599) encompassing the CSR region shares homology with Aβ and forms β-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE β-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE586-599, or versus Aβ, differed. Moreover, IDE digestion of T40 triggered the conformational switch from α- to β-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Aβ fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Aβ deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Aβ in AD, for example) may not be the only important factor in neurodegeneration

    Tau filament self-assembly and structure: tau as a therapeutic target

    Get PDF
    Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors

    Caspases first

    No full text
    corecore