669 research outputs found

    Modelling hair follicle growth dynamics as an excitable medium

    Get PDF
    The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle), it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth

    Regenerative memory in time-delayed neuromorphic photonic resonators

    Get PDF
    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals

    Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation

    Get PDF
    Transduction of graded synaptic input into trains of all-or-none action potentials (spikes) is a crucial step in neural coding. Hodgkin identified three classes of neurons with qualitatively different analog-to-digital transduction properties. Despite widespread use of this classification scheme, a generalizable explanation of its biophysical basis has not been described. We recorded from spinal sensory neurons representing each class and reproduced their transduction properties in a minimal model. With phase plane and bifurcation analysis, each class of excitability was shown to derive from distinct spike initiating dynamics. Excitability could be converted between all three classes by varying single parameters; moreover, several parameters, when varied one at a time, had functionally equivalent effects on excitability. From this, we conclude that the spike-initiating dynamics associated with each of Hodgkin's classes represent different outcomes in a nonlinear competition between oppositely directed, kinetically mismatched currents. Class 1 excitability occurs through a saddle node on invariant circle bifurcation when net current at perithreshold potentials is inward (depolarizing) at steady state. Class 2 excitability occurs through a Hopf bifurcation when, despite net current being outward (hyperpolarizing) at steady state, spike initiation occurs because inward current activates faster than outward current. Class 3 excitability occurs through a quasi-separatrix crossing when fast-activating inward current overpowers slow-activating outward current during a stimulus transient, although slow-activating outward current dominates during constant stimulation. Experiments confirmed that different classes of spinal lamina I neurons express the subthreshold currents predicted by our simulations and, further, that those currents are necessary for the excitability in each cell class. Thus, our results demonstrate that all three classes of excitability arise from a continuum in the direction and magnitude of subthreshold currents. Through detailed analysis of the spike-initiating process, we have explained a fundamental link between biophysical properties and qualitative differences in how neurons encode sensory input

    Ion Channel Density Regulates Switches between Regular and Fast Spiking in Soma but Not in Axons

    Get PDF
    The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking) shows a continuous relationship between frequency and stimulation current (f-Istim) and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking) shows a discontinuous f-Istim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model). In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane

    Assessing Physical Activity and its Relationship to Cardiovascular Risk Factors: NHANES 2003-2006

    Get PDF
    Background: Levels of physical activity (PA) in the general population are difficult to characterize. Historically measurement has been based on self-report, which can be subject to bias. PA monitor use has created opportunities to improve surveillance and analytic research on activity and health. The aims of the current study were to investigate the associations between objectively measured PA and cardiovascular disease risk factors and obesity. Methods. Data on PA from accelerometers, demographics, blood pressure, plasma glucose and lipids, self-reported hypertension and diabetes were obtained for adults, ages 20-65, in the NHANES surveys, 2003-2006. Outcomes were assessed as levels of moderate and vigorous activity, percentage of participants meeting recommended guidelines, and the correlations between activity and cardiovascular risk factors. Accelerometry data were available on 3,370 adults. Based on standard algorithms, activity levels were extremely low in all age-gender-race/ethnic groups, with an average of only 1 bout of vigorous activity lasting longer than 1 minute/day. Results: Men spent 35 minutes in moderate activity/day, women 21 minutes; \u3e 75% of this activity was accumulated in 1-minute bouts. Levels of activity declined sharply after age 50 in all groups. Negative associations were observed between minutes of combined moderate and vigorous activity and systolic blood pressure, blood glucose, diabetes, hypertension, body mass index and obesity, and a positive association was seen with HDL-cholesterol (all P ≤ 0.03), suggesting valid rank ordering of participants by activity level. Conclusion: The magnitude of the gap between self-report and accelerometry activity must be a result of either a vast social acceptability bias in reporting or inaccurate measurement with accelerometry. Therefore, due to the low validity of self reported PA data for epidemiologic research, it is pertinent to encourage the use of valid, objective methods to assess PA. © 2011 Luke et al; licensee BioMed Central Ltd

    A Threshold Equation for Action Potential Initiation

    Get PDF
    In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold

    Spiral-Wave Turbulence and Its Control in the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue

    Get PDF
    Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control schemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation
    corecore