966 research outputs found

    A Chromosomal Deletion and New Frameshift Mutation Cause ARSACS in an African-American

    Get PDF
    Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is a rare, progressive, neurodegenerative disease characterized by ataxia, spasticity and polyneuropathy. First described in the French-Canadian population of Quebec in 1978, ARSACS has since been identified in multiple patients worldwide. In this clinical case report, we describe the evaluation of an 11-years-old African-American male who presented to neuromuscular clinic for assessment of a gait abnormality. He had a history of gross motor delay since early childhood, frequent falls and a below average IQ. Chromosomal microarray revealed a 1.422 megabase loss in the 13q12.12 region, which includes the SACS gene. Next Generation Sequencing then showed a novel, predicted to be pathogenic missense mutation (c.11824dup) of this gene. His clinical presentation and neurological imaging further confirmed the diagnosis of ARSACS. To our knowledge, this is the first reported case of this disease in the African-American population of the United States. This case report further highlights the growing trend of identifying genetic diseases previously restricted to single, ethnically isolated regions in many different ethnic groups worldwide

    Why business angels reject investment opportunities: Is it personal?

    Get PDF
    A major focus of research on business angels has examined their decision-making processes and investment criteria. As business angels reject most of the opportunities that they receive, this article explores the reasons informing such decisions. In view of angel heterogeneity, investment opportunities might be expected to be rejected for differing reasons. Two sources of data are used to examine this issue. Face-to-face interviews with 30 business angels in Scotland and Northern Ireland provided information on typical ‘deal killers’. This was complemented by an Internet survey of United Kingdom that attracted responses from 238 UK business angels. The findings confirm that the main reason for rejection relates to the entrepreneur/management team. However, angel characteristics do not explain the number of reasons given for opportunity rejection nor do they predict the reasons for rejecting investment opportunities. This could be related to the increasing trend for business angels to join organised groups which, in turn, leads to the development of a shared repertoire of investment approaches. We suggest the concept of ‘communities-of-practice’ as an explanation for this finding

    Ontogenetic oxycodone exposure affects early life communicative behaviors, sensorimotor reflexes, and weight trajectory in mice

    Get PDF
    Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for neonatal abstinence syndrome (NAS). NAS occurs when a fetus exposed to opioid

    Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)

    Get PDF
    We are conducting an experiment to search for WIMPs, or weakly-interacting massive particles, in the galactic halo using terrestrial detectors. This generic class of hypothetical particles, whose properties are similar to those predicted by extensions of the standard model of particle physics, could comprise the cold component of non-baryonic dark matter. We describe our experiment, which is based on cooled germanium and silicon detectors in a shielded low-background cryostat. The detectors achieve a high degree of background rejection through the simultaneous measurement of the energy in phonons and ionization. Using exposures on the order of one kilogram-day from initial runs of our experiment, we have achieved (preliminary) upper limits on the WIMP-nucleon cross section that are comparable to much longer runs of other experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A. di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed

    Activity-dependent translation dynamically alters the proteome of the perisynaptic astrocyte process

    Get PDF
    Within eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses. We show that seizure activity rapidly changes the transcripts on astrocyte ribosomes, some predicted to be downstream of BDNF signaling. In acute slices, we quantify the extent to which cues of neuronal activity activate translation in astrocytes and show that this translational response requires the presence of neurons, indicating that the response is non-cell autonomous. We also show that this induction of new translation extends into the periphery of astrocytes. Finally, synaptic proteomics show that new translation is required for changes that occur in perisynaptic astrocyte protein composition after fear conditioning. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning

    Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response

    Get PDF
    Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4g/kg or 0.8g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a “Go-stimulus” when it was followed by a “Stop-stimulus”. In the control variant (VSST_C), participants responded to the “Go-stimulus” even if it was followed by a “Stop-stimulus”. Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour

    Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae

    Get PDF
    ABSTRACT In contrast to the situation with tuberculosis, rifampin resistance in leprosy may remain undetected due to the lack of rapid and effective diagnostic methods. A quick and reliable method is essential to determine the impacts of emerging detrimental mutations. The functional consequences of missense mutations within the β-subunit of RNA polymerase in Mycobacterium leprae ( M. leprae ) contribute to phenotypic rifampin resistance outcomes in leprosy. Here we report in-silico saturation mutagenesis of all residues in the β-subunit of RNA polymerase to all other 19 amino acid types and predict their impacts on overall thermodynamic stability, on interactions at subunit interfaces, and on β-subunit-RNA and rifampin affinities using state-of-the-art structure, sequence and normal mode analysis-based methods. A total of 21,394 mutations were analysed, and it was noted that mutations in the conserved residues that line the active-site cleft show largely destabilizing effects, resulting in increased relative solvent accessibility and concomitant decrease in depth of the mutant residues. The mutations at residues S437, G459, H451, P489, K884 and H1035 are identified as extremely detrimental as they induce highly destabilizing effects on the overall stability, nucleic acid and rifampin affinities. Destabilizing effects were predicted for all the experimentally identified rifampin-resistant mutations in M. leprae indicating that this model can be used as a surveillance tool to monitor emerging detrimental mutations conferring rifampin resistance in leprosy. AUTHOR SUMMARY Emergence of primary and secondary drug resistance to rifampin in leprosy is a growing concern and poses threat to the leprosy control and elimination measures globally. In the absence of an effective in-vitro system to detect and monitor phenotypic rifampin resistance in leprosy, most of the diagnosis relies on detecting mutations in the drug resistance determining regions of the rpoB gene that encodes the β subunit of RNA polymerase in M. leprae . Few labs in the world perform mouse food pad propagation of M. leprae in the presence of drugs (rifampin) to determine growth patterns and confirm resistance, however the duration of these methods lasts from 8 to 12 months making them impractical for diagnosis. Understanding molecular mechanisms of drug resistance is vital to associating mutations to clinical resistance outcomes in leprosy. Here we propose an in-silico saturation mutagenesis approach to comprehensively elucidate the structural implications of any mutations that exist or can arise in the β subunit of RNA polymerase in M. leprae . Most of the predicted mutations may not occur in M. leprae due to fitness costs but the information thus generated by this approach help decipher the impacts of mutations across the structure and conversely enable identification of stable regions in the protein that are least impacted by mutations (mutation coolspots) which can be a choice for small molecule binding and structure guided drug discovery

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access
    corecore