15 research outputs found

    Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens

    Get PDF
    Plants contain numerous components that are important sources of new bioactive molecules with antimicrobial properties. Isothiocyanates (ITCs) are plant secondary metabolites found in cruciferous vegetables that are arising as promising antimicrobial agents in food industry. The aim of this study was to assess the antibacterial activity of two isothiocyanates (ITCs), allylisothiocyanate (AITC) and 2-phenylethylisothiocyanate (PEITC) against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. The antibacterial mode of action was also characterized by the assessment of different physiological indices: membrane integrity, intracellular potassium release, physicochemical surface properties and surface charge. The minimum inhibitory concentration (MIC) of AITC and PEITC was 100 g/mL for all bacteria. The minimum bactericidal concentration (MBC) of the ITCs was at least 10 times higher than the MIC. Both AITC and PEITC changed the membrane properties of the bacteria decreasing their surface charge and compromising the integrity of the cytoplasmatic membrane with consequent potassium leakage and propidium iodide uptake. The surface hydrophobicity was also non-specifically altered (E. coli and L. monocytogenes become less hydrophilic; P. aeruginosa and S. aureus become more hydrophilic). This study shows that AITC and PEITC have strong antimicrobial potential against the bacteria tested, through the disruption of the bacterial cell membranes. Moreover, phytochemicals are highlighted as a valuable sustainable source of new bioactive products.This work was supported by the Operational Programme for Competitiveness Factors - COMPETE and by the Portuguese Foundation for Science and Technology through Project Phytodisinfectants - PTDC/DTP-SAP/1078/2012 (COMPETE: FCOMP-01-0124-FEDER-028765), the PhD grant awarded to Ana Abreu (SFRH/BD/84393/2012), and the post-doctoral grants awarded to Anabela Borges (SFRH/BPD/98684/2013) and Lucia C. Simoes (SFRH/BPD/81982/2011). Also, this work was undertaken as part of the European Research Project SUSCLEAN (Contract no FP7-KBBE-2011-5, project number: 287514) and the COST Action FA1202. The authors are solely responsible for this work. It does not represent the opinion of the European Community, and the Community is not responsible for any use that might be made of data appearing herein

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Joint theoretical experimental investigation of the electron spin resonance spectra of nitroxyl radicals: application to intermediates in in situ nitroxide mediated polymerization (in situ NMP) of vinyl monomers

    Get PDF
    Density functional theory (DFT) calculations have been performed to address the structure of nitroxide intermediates in controlled radical polymerization. In a preliminary step, the reliability of different theoretical methods has been substantiated by comparing calculated hyperfine coupling constants (HFCCs) to experimental data for a set of linear and cyclic alkylnitroxyl radicals. Considering this tested approach, the nature of different nitroxides has been predicted or confirmed for (a) the reaction of C-phenyl-N-tert-butylnitrone and AIBN, (b) N-tert-butyl-α-isopropylnitrone and benzoyl peroxide, (c) tert-butyl methacrylate polymerization in the presence of sodium nitrite as mediator, and (d) for the reaction of a nitroso compound with AIBN. Values of HFCC experimentally determined have been confirmed by DFT calculations
    corecore