22 research outputs found

    Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to clarify the prognostic significance of peritumoral lymphocyte infiltration in the capsule of soft tissue sarcomas (STS). Multiple observations in preclinical and clinical studies have shown that the immune system has a role in controlling tumor growth and progression. Prognostic markers in potentially curable STS should guide therapy after surgical resection. The immune status at the time of resection may be important, but the prognostic significance of peritumoral lymphocytes is unknown.</p> <p>Methods</p> <p>Tissue microarrays from 80 patients with STS were constructed from duplicate cores of tissue from the tumor and the peritumoral capsule. Immunohistochemistry was used to evaluate the CD3+, CD4+, CD8+ and CD20+ lymphocytes in the tumor and the peritumoral capsule.</p> <p>Results</p> <p>In univariate analyses, increasing numbers of CD20+ (<it>P </it>= 0.032) peritumoral lymphocytes were associated with a reduced disease free survival (DSS). In multivariate analyses, a high number of CD20+ peritumoral lymphocytes (<it>P </it>= 0.030) in the capsule was an independent negative prognostic factor for DSS. There were no such associations of lymphocyte infiltration in the tumor.</p> <p>Conclusions</p> <p>A high density of CD20+ peritumoral lymphocytes is an independent negative prognostic indicator for patients with STS. Further research is needed to determine whether CD20 cells in the peritumoral capsule of STS may promote tumor invasion in the surrounding tissue and increase the metastatic potential.</p

    A molecular mechanism for bacterial susceptibility to zinc

    Get PDF
    Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumonia extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a DpsaA mutant, which is unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro, these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by extracellular cation competition and that this can be harnessed by the innate immune response.Christopher A. McDevitt, Abiodun D. Ogunniyi, Eugene Valkov, Michael C. Lawrence, Bostjan Kobe, Alastair G. McEwan and James C. Pato

    Structural basis for retroviral integration into nucleosomes

    No full text
    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome1, 2. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome–nucleosome interface involving both gyres of nucleosomal DNA and one H2A–H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A–H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration

    Splice variant PRKC-ζ-PrC is a novel biomarker of human prostate cancer

    No full text
    BACKGROUND: Previously, using gene-knockdown techniques together with genome expression array analysis, we showed the gene protein Kinase C (PKC)-zeta (PRKCZ) to mediate the malignant phenotype of human prostate cancer. However, according to NCBI, the gene has undergone several major iterations. Therefore, to understand the relationship between its structure and biological activities, we have analysed its expressed sequence in prostate cancer cell lines and tissues. METHODS: Transcriptome-walking and targeted PCR were used to sequence the mRNA transcribed from PRKCZ. Hydropathy analysis was employed to analyse the hypothetical protein sequence subsequently translated and to identify an appropriate epitope to generate a specific monoclonal antibody. RESULTS: A novel sequence was identified within the 3′-terminal domain of human PRKCZ that, in prostate cancer cell lines and tissues, is expressed during transcription and thereafter translated into protein (designated PKC-ζ(-PrC)) independent of conventional PKC-ζ(-a). The monoclonal antibody detected expression of this 96 kD protein only within malignant prostatic epithelium. INTERPRETATION: Transcription and translation of this gene sequence, including previous intronic sequences, generates a novel specific biomarker of human prostate cancer. The presence of catalytic domains characteristic of classic PKC-β and atypical PKC-ι within PKC-ζ(-PrC) provides a potential mechanism for this PRKCZ variant to modulate the malignant prostatic phenotype out-with normal cell-regulatory control

    Early Radiation of Biomineralizing Phyla

    No full text
    corecore