271 research outputs found

    Risk assessment of wind droughts over India

    Get PDF
    Wind power growth makes it essential to simulate weather variability and its impacts on the electricity grid. Low-probability, high-impact weather events such as a wind drought are important but difficult to identify based on limited historical datasets. A stochastic weather generator, Imperial College Weather Generator (IMAGE), is employed to identify extreme events through long-period simulations. IMAGE captures mean, spatial correlation and seasonality in wind speed and estimates return periods of extreme wind events over India. Simulations show that when Rajasthan experiences wind drought, southern India continues to have wind, and vice versa. Regional grid-scale wind droughts could be avoided if grids are strongly interconnected across the country

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Brain and ventricular volume in patients with syndromic and complex craniosynostosis

    Get PDF
    textabstractPurpose: Brain abnormalities in patients with syndromic craniosynostosis can either be a direct result of the genetic defect or develop secondary to compression due to craniosynostosis, raised ICP or hydrocephalus. Today it is unknown whether children with syndromic craniosynostosis have normal brain volumes. The purpose of this study was to evaluate brain and ventricular volume measurements in patients with syndromic and complex craniosynostosis. This knowledge will improve our understanding of brain development and the origin of raised intracranial pressure in syndromic craniosynostosis. Methods: Brain and ventricular volumes were calculated from MRI scans of patients with craniosynostosis, 0.3 to 18.3 years of age. Brain volume was compared to age matched controls from the literature. All patient charts were reviewed to look for possible predictors of brain and ventricular volume. Results: Total brain volume in syndromic craniosynostosis equals that of normal controls, in the age range of 1 to 12 years. Brain growth occurred particularly in the first 5 years of age, after which it stabilized. Within the studied population, ventricular volume was significantly larger in Apert syndrome compared to all other syndromes and in patients with a Chiari I malformation. Conclusions: Patients with syndromic craniosynostosis have a normal total brain volume compared to normal controls. Increased ventricular volume is associated with Apert syndrome and Chiari I malformations, which is most commonly found in Crouzon syndrome. We advice screening of all patients with Apert and Crouzon syndrome for the development of enlarged ventricle volume and the presence of a Chiari I malformation

    Characteristics and Outcomes of People With Gout Hospitalized Due to COVID-19: Data From the COVID-19 Global Rheumatology Alliance Physician-Reported Registry

    Get PDF
    Objective: To describe people with gout who were diagnosed with coronavirus disease 2019 (COVID-19) and hospitalized and to characterize their outcomes. Methods: Data on patients with gout hospitalized for COVID-19 between March 12, 2020, and October 25, 2021, were extracted from the COVID-19 Global Rheumatology Alliance registry. Descriptive statistics were used to describe the demographics, comorbidities, medication exposures, and COVID-19 outcomes including oxygenation or ventilation support and death. Results: One hundred sixty-three patients with gout who developed COVID-19 and were hospitalized were included. The mean age was 63 years, and 85% were male. The majority of the group lived in the Western Pacific Region (35%) and North America (18%). Nearly half (46%) had two or more comorbidities, with hypertension (56%), cardiovascular disease (28%), diabetes mellitus (26%), chronic kidney disease (25%), and obesity (23%) being the most common. Glucocorticoids and colchicine were usedΒ pre-COVID-19 in 11% and 12% of the cohort, respectively. Over two thirds (68%) of the cohort required supplemental oxygen or ventilatory support during hospitalization. COVID-19-related death was reported in 16% of the overall cohort, with 73% of deaths documented in people with two or more comorbidities. Conclusion: This cohort of people with gout and COVID-19 who were hospitalized had high frequencies of ventilatory support and death. This suggests that patients with gout who were hospitalized for COVID-19 may be at risk of poor outcomes, perhaps related to known risk factors for poor outcomes, such as age and presence of comorbidity

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p

    Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus

    Get PDF
    A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped, nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades

    Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor Ξ±6 Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.)

    Get PDF
    The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR) and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (PxΞ±6), at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of PxΞ±6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated PxΞ±6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species
    • …
    corecore