19 research outputs found

    Break-Induced Replication Requires DNA Damage-Induced Phosphorylation of Pif1 and Leads to Telomere Lengthening

    Get PDF
    Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway - Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening

    Disease: A Hitherto Unexplored Constraint on the Spread of Dogs (Canis lupus familiaris) in Pre-Columbian South America

    Full text link

    Nested Sequential Monte Carlo Methods

    Get PDF
    We propose nested sequential Monte Carlo (NSMC), a methodology to sample from sequences of probability distributions, even where the random variables are high-dimensional. NSMC generalises the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. Furthermore, NSMC can in itself be used to produce such properly weighted samples. Consequently, one NSMC sampler can be used to construct an efficient high-dimensional proposal distribution for another NSMC sampler, and this nesting of the algorithm can be done to an arbitrary degree. This allows us to consider complex and high-dimensional models using SMC. We show results that motivate the efficacy of our approach on several filtering problems with dimensions in the order of 100 to 1 000

    ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors

    Get PDF
    Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological, genetic, and epigenetic levels. Exome sequencing has identified ARID1A as a novel tumor suppressor gene coding for a chromatin remodeling protein that is mutated in UBC. Here, we assess ARID1A alterations in two series of patients with UBC. In the first tumor series, we analyze exons 2–20 in 52 primary UBC and find that all mutant tumors belong to the aggressive UBC phenotype (high grade non-muscle invasive and muscle invasive tumors) (P = 0.05). In a second series (n = 84), we assess ARID1A expression using immunohistochemistry, a surrogate for mutation analysis, and find that loss of expression increases with higher stage/grade, it is inversely associated with FGFR3 overexpression (P = 0.03) but it is not correlated with p53 overexpression (P = 0.30). We also analyzed the expression of cytokeratins in the same set of tumor and find, using unsupervised clustering, that tumors with ARID1A loss of expression are generally KRT5/6-low. In this patient series, loss of ARID1A expression is also associated with worse prognosis, likely reflecting the higher prevalence of losses found in tumors of higher stage and grade. The independent findings in these two sets of patients strongly support the notion that ARID1A inactivation is a key player in bladder carcinogenesis occurring predominantly in FGFR3 wild type tumors.This work was supported in part by grant Consolider ONCOBIO from Ministerio de Economía y Competitividad, Spain; grants 00/0745, PI051436, PI061614, G03/174 and Red Temática de Investigación Cooperativa en Cáncer (grant RD06/0020-RTICC) from Instituto de Salud Carlos III; Asociación Española Contra el Cáncer; and EU FP7 grant agreement numbers 201663 (UROMOL) and 201333 (DECANBIO). CBM is recipient of a La Caixa International PhD Fellowshi
    corecore