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Abstract

Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced
replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a
population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the
DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA
damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway – Rad51, Rad52, Pol32, and
Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double
strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with
impaired DNA replication, cdc44-5 and rrm3D, were similar to cdc9-1: their long telomere phenotype was dependent on the
Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase
activity and leads to telomere lengthening.
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Introduction

Replication is a major source of nuclear DNA damage under

normal mitotic growth conditions, i.e. in the absence of drugs or

irradiation [1]. Studies in both prokaryotes and eukaryotes suggest

that replication fork movement rates are heterogeneous, with

slower fork movement, fork pausing and breaks at ‘‘hard-to-

replicate’’ regions of the genome [2]. Stalled or broken replication

forks are recognized as sites of DNA damage and activate a DDR

(DNA damage response). The recognition of DNA damage leads

to activation of a signaling cascade: phosphorylation is used to

transduce the signal from the sensor kinases ATR and ATM

(Mec1 and Tel1, respectively, in budding yeast) to the adaptors

(Rad9 and Mrc1 in yeast), and then to the effector kinases Chk1

and Chk2 (Chk1 and Rad53/Dun1 in yeast), which in turn induce

cell cycle arrest and DNA repair [3].

Broken replication forks generate a one-ended DSB that can be

repaired by different mechanisms relying on DNA homology

between the broken end and unbroken sister chromatid: homol-

ogous recombination, synthesis dependent strand annealing, or

break-induced replication (BIR). During BIR, DSB processing by

exo- and endonucleases generates a 39ssDNA overhang that

enables the homologous recombination machinery (Rad51/52/

54/55/57) to invade a homologous sequence of the unbroken

sister chromatid to re-establish the DNA synthesis [4]. Unlike

conventional DNA replication, BIR employs a conservative

replication mode [5,6] and requires the Pold subunit Pol32 and

the 59R39 helicase Pif1 [7,8].

Replication of telomeres, the ends of eukaryotic chromosomes,

involves the enzyme telomerase. The core telomerase complex of

S. cerevisiae includes an RNA component TLC1 [9] and the

reverse transcriptase Est2 [10,11]. Telomerase-dependent telo-

mere synthesis is tightly coupled to conventional DNA replication

and occurs in the S/G2 phase of the cell cycle [12,13]. Telomerase

can also add a telomere to a non-telomeric DNA end [14,15], such

as a DSB or a broken replication fork, thereby leading to a

terminal deletion [16]. To prevent de novo telomere addition, the

Pif1 helicase is phosphorylated in cells with DNA damage and the

phosphorylated form of the protein inhibits telomerase at broken

DNA ends [17]. Pif1 helicase is also a negative regulator of

telomerase at telomeres under normal growth conditions [16].

Therefore, cells lacking Pif1 possess both longer telomeres and

elevated frequencies of de novo telomere addition to DSBs [16,18].

Although telomerase is inhibited at broken DNA ends through

the phosphorylation of Pif1 by the DNA damage signaling

machinery, as yet it remains unknown if any modulation of

telomere synthesis in response to DNA damage takes place. Here

we report that the DNA damage-induced phosphorylation of Pif1
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is required not only for the inhibition of telomerase at DSBs but

also for the function of Pif1 in BIR. In turn, activation of BIR in

cells with DNA damage leads to telomere lengthening which may

provide an additional layer of telomere protection against the

DNA repair machinery [19]. Thus, the DNA damage-induced

phosphorylation of Pif1 promotes potentially telomere-stabilizing

telomere extension while repressing deleterious de novo telomere

addition events at DNA breaks, thereby funneling the broken

DNA into appropriate genome-preserving repair pathways.

Results

Telomerase-dependent telomere addition is increased in
cdc9-1 cells

During DNA replication, incomplete DNA ligation via partially

abrogated ligase function may cause DNA discontinuities. In S.
cerevisiae, CDC9 encodes a replicative DNA ligase essential for

yeast cell viability [20]. Like other temperature sensitive cdc9
mutants, cdc9-1 cells grow normally at 23uC but at 36uC arrest as

large-budded cells with the nuclei at the bud necks [21]. The cdc9-
1 arrest is temporarily relieved in cdc9-1 rad9D cells, which at the

non-permissive temperature undergo one or two cell divisions

before losing viability [22].

It has been reported previously that cdc9-1 mutants have longer

telomeres [23]. When grown at 22uC, the cdc9-1 mutant strain

possessed a bulk telomere length similar to CDC9 cells (Figure 1A).

However, when cdc9-1 yeast were propagated at an intermediate

temperature, 26uC, after about 80 generations the telomeres were

distinctly and reproducibly elongated (mean telomere length

450 bp) compared to the isogenic CDC9 strain (mean telomere

length 350 bp) (Figure 1A). At this semi-permissive temperature

(26uC), cdc9-1 cells showed only a very mild growth defect

phenotype and possessed a slightly smaller colony size (Figure 1B).

The telomere length phenotype in cdc9-1 cells could have arisen

from any of the following possibilities: (i) increased telomerase

action, (ii) increased telomeric recombination, (iii) impaired

telomere processing/shortening. To distinguish between these

possibilities, we compared the dynamics of telomere length

changes in response to cdc9-1 in the presence and absence of

telomerase. The double heterozygous diploids CDC9/cdc9-1
EST2/est2D and CDC9/cdc9-1 TLC1/tlc1D were sporulated and

germinated spores grown into single colonies (about 20 genera-

tions) at 22uC. The four progeny spores from the tetrads were

subsequently grown on plates at 26uC for a further ,40

generations (two streaks) for telomere length analysis. As expected,

in the presence of telomerase, the cdc9-1 cells possessed longer

telomeres than CDC9 cells (Figure 1C). However, in cells lacking

Est2 or TLC1, the cdc9-1 mutation had no effect on telomere

length: both CDC9 and cdc9-1 cells lacking either essential

telomerase component showed similar rates of telomere shorten-

ing. Thus, the telomere lengthening in response to cdc9-1 was

dependent on functional telomerase and was not a result of

impaired telomere erosion or end processing.

Constitutive activation of the DNA damage signaling
leads to telomere lengthening in cdc9-1 cells

FACS analysis indicated that non-synchronized populations of

haploid cdc9-1 yeast were enriched for cells with 2n DNA content

(Figure 2A), suggestive of a cell cycle progression delay in late S-

phase or G2, perhaps due to checkpoint activation. In response to

DNA damage, a central component of the DNA damage signaling

pathway, Rad53, is activated by phosphorylation [24]. In cdc9-1
cells at 26uC, but not 22uC, a shift in Rad53 mobility upon SDS-

PAGE characteristic of Rad53 phosphorylation in response to DNA

damage was observed (Figure 2B). Therefore, at the semi-permis-

sive temperature the cdc9-1 mutation leads to DDR activation.

We tested the genetic dependency of the telomere lengthening

in cdc9-1 cells at 26uC on known DNA damage signaling network

components. Diploid strains heterozygous for both CDC9/cdc9-1
and each gene of interest were sporulated and the spores

germinated at 22uC. In the case of MEC1 or RAD53, the cells

were also heterozygous for SML1/sml1D in order to suppress the

known lethality of mec1D or rad53D with sml1D in the haploid

progeny [25]. Progeny with different genotypes were propagated

at 26uC for 4 re-streaks (,80 generations) to allow telomere length

to reach the stable length characteristic of each genotype.

Telomere elongation in cdc9-1 cells was retained in a tel1D or

chk1D background, in the replication checkpoint deficient mutant

mrc1-AQ [26] and in an sml1D dun1D background where sml1D
suppresses the effect of dun1D on S-phase progression [27]. In

contrast, the telomere lengthening in cdc9-1 cells was dependent

on RAD50, MEC3, RAD24 (to some extent), MEC1, RAD9, and

RAD53 (Figure 2C).

Cdc17 is a catalytic subunit of the DNA polymerase Pola that

plays a pivotal role in the coordination of telomere synthesis and

conventional DNA replication [28]. Like cdc9-1, a temperature

sensitive mutation, cdc17-1, results in longer telomeres [23,29].

However, cdc17-1 did not exhibit constitutive activation of DDR

and the cdc17-1 induced telomere lengthening was independent of

the DNA damage checkpoint (Figure S1). Therefore, we conclude

that the telomere elongation phenotype of cdc9-1 at 26uC is not a

defect related to the coordination of lagging strand synthesis at

telomeres, but rather depends on activation of the central DNA

damage checkpoint network (RAD50, MEC3, RAD24, MEC1,

RAD9, and RAD53) but not on TEL1, MRC1, DUN1 or CHK1.

Thus, the effect of cdc9-1 on telomere synthesis is likely to be

indirect, via activation of the DNA damage signaling which then

leads to telomere lengthening.

Phosphorylation of nPif1 via DNA damage signaling
machinery is required for the cdc9-1 induced telomere
lengthening

We used a candidate approach to identify a potential link

between the activation of the DNA damage response and telomere

Author Summary

Telomeres are the ends of linear eukaryotic chromosomes
maintained by an enzyme called telomerase. Non-telo-
meric DNA ends are often generated as a result of broken
replication forks and are usually repaired by break-induced
replication (BIR) or homologous recombination to avoid
genomic instability. However, telomerase can interfere
with the repair by adding a new telomere to a broken DNA
end, or the break can be ligated to a telomere, thereby
inducing genome re-arrangements that are often found in
human genetic disorders and cancer. To understand how
cells avoid erroneous repair, we studied cdc9-1 yeast
mutant cells that generate broken replication forks with
high frequency. We discovered that, in cells with DNA
damage, a helicase called Pif1 is phosphorylated and this
phosphorylation enables Pif1 not only to inhibit telome-
rase at broken DNA ends but also stimulate the break
repair by BIR, which in turn leads to additional telomere
lengthening. Thus, a new regulatory pathway stimulates
accurate break repair by BIR and at the same time
promotes telomerase activity at telomeres.

BIR Requires Pif1 Phosphorylation and Leads to Telomere Lengthening
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lengthening in cdc9-1 cells based on (i) a previously reported role

for the candidate proteins in telomere metabolism; (ii) the

candidate proteins are regulated by the DNA damage signaling

machinery. A set of candidates came from the report that

activation of DDR leads to dynamic changes in telomere

architecture [30]. The yeast telomeric chromatin components

Rap1, Sir2/3/4, Rif1, and Rif2 (which regulate telomerase action

on a telomere in cis [31]), and the Ku70/80 complex (which is

required for telomerase localization in the nucleus and at the

telomeres [32]) re-localize away from telomeres in a Rad9-

dependent manner [30]. Such re-localization during DDR

activation in cdc9-1 could lead to longer telomeres. We analyzed

the effect of the cdc9-1 mutation on telomere length in cells

deleted for RIF1, RIF2, SIR2, SIR3, SIR4, YKU70, or YKU80.

The telomere length increase observed in cdc9-1 cells did not

depend on RIF1 or RIF2 but was moderately decreased in the

absence of the Sir proteins, and no telomere elongation was

observed in either yku70 or yku80 backgrounds (Figure S2).

Therefore, the telomere elongation observed in cdc9-1 cells is

dependent on Ku70/80 and at least partially dependent on Sir

proteins. The Ku70/80 dependence is in accord with the known

requirement of Ku70/80 in telomerase recruitment [32], while the

SIR-dependence could reflect known roles in telomere architec-

ture and telomerase regulation in cis, or as yet unexplored role(s) in

BIR-dependent telomere replication.

DNA damage-induced signaling is also known to regulate a

nuclear form of the Pif1 helicase [17], a well characterized

inhibitor of telomerase at both telomeres and DNA breaks [16].

Phosphorylation of nuclear Pif1 (nPif1) in response to DSBs is

required for telomerase inhibition at broken DNA ends [17]. To

query if nPif1 and its phosphorylation during the DDR were

responsible for the telomere lengthening in cdc9-1 cells, we

combined cdc9-1 with pif1D, pif1-m2 (nPif1 null [16]), or the

previously reported PIF1 alleles pif1-3A and pif1-4A that

abrogate Mec1-Rad53-dependent phosphorylation of the peptide

TLSSAES [17]. Like cdc9-1, pif1D and pif1-m2 have longer

telomeres but no additive telomere lengthening was observed in

either cdc9-1 pif1D or cdc9-1 pif1-m2 (Figure 3A). Furthermore,

both pif1-3A and pif1-4A mutations alleviated the cdc9-1 induced

telomere lengthening, with slightly more pronounced effect in a

pif1-4A background compared with pif1-3A (Figure 3B), suggest-

ing a possibility of nPif1 phosphorylation playing a role in telomere

elongation in cdc9-1 cells. Thus, the telomere lengthening in

cdc9-1 cells is genetically dependent on the presence of the nu-

clear form of Pif1 and specifically on the phosphorylation of

TLSSAES.

To test whether nPif1 was phosphorylated in cdc9-1 cells, we

immunoprecipitated Pif1-4myc from CDC9 and cdc9-1 cells and

treated a third of each sample with either CIP or l phosphatase

and compared their mobility by SDS-PAGE (Figure 4A). Indeed,

nPif1 migration was retarded to a greater extent in cdc9-1 than in

CDC9 cells and phosphatase treatment eliminated this mobility

difference. In fact, phosphatase treatment resulted in faster

mobility nPif1 species in both CDC9 and cdc9-1 cells (Figure 4A:

compare lane 2 to lanes 4 and 6). Together, these findings suggest

that nPif1 possesses a basal level of phosphorylation in wild-type

cells, and that additional phosphorylation events occur in response

to cdc9-1. Consistent with the DDR-dependent modulation of

nPif1 activity at DSBs, nPif1 phosphorylation in response to cdc9-
1 depended on MEC1 and RAD53 but not TEL1 or DUN1
(Figure 4B). To further probe nPif1phosphorylation, we used an

antibody specific to the nPif1 phospho-regulatory locus

(pT)LS(pS)AE (anti-P-Pif1 antibody) [17] and established its

phosphatase-dependent recognition of nPif1 in cdc9-1 (but not

CDC9) cells that was largely abrogated by the pif1-4A mutation

(Figure 4C, top panel). In sml1D mec1D and sml1D rad53D
backgrounds, the cdc9-1 dependent recognition of Pif1 with the

anti-P-Pif1 antibody was considerably reduced (Figure 4D). Taken

together, the data indicate that cdc9-1 activates MEC1-RAD53-

dependent phosphorylation of nPif1 on TLSSAES (as well as on

other positions on Pif1), and that the resulting telomere

lengthening minimally requires TLSSAES phosphorylation.

Figure 1. Telomerase-dependent telomere elongation is increased in cdc9-1 cells at 266C. (A) Telomere length in CDC9 and cdc9-1 cells at
22uC and 26uC assayed by Southern blotting (‘‘teloblot’’). (B) CDC9 and cdc9-1 colony growth at 26uC on rich medium. The photo was taken after 48 h
incubation. (C) Telomere lengthening in response to cdc9-1 requires functional telomerase. The teloblots are shown as sets of four samples
representing four spore progeny from the same tetrad germinated at 22uC and grown for ,40 generations (2 passages) at 26uC. DNA standards (in
kbp) shown at left.
doi:10.1371/journal.pgen.1004679.g001

BIR Requires Pif1 Phosphorylation and Leads to Telomere Lengthening
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Figure 2. Activation of the DNA damage checkpoint occurs in cdc9-1 cells at 266C and is required for their telomere length
phenotype. (A) The cdc9-1 mutation leads to accumulation of late S/G2 cells at 26uC. (B) Rad53 activation in response to cdc9-1 at 26uC, or after
treatment with either hydroxyurea (200 mM, HU200), or Phleomycin (5 mg/ml, PHL5) for 2 h at 26uC. (C) Epistasis analysis of telomere lengthening
(assayed by teloblot) in response to cdc9-1 involving mutations in genes for different components of the DNA damage signaling network. Telomere
length analyses by teloblots which are shown either as sets of four samples representing four spore progeny from the same tetrad or sets of six
spores from different tetrads but the same parental strain (for mec1 and rad53), with telomere length equilibrated at 26uC. DNA standards (in kbp)
shown at left.
doi:10.1371/journal.pgen.1004679.g002

Figure 3. Telomere elongation in cdc9-1 is dependent on the presence of nPif1 and its phosphorylation locus. Telomere length
analyses by teloblots which are shown as sets of four samples representing four spore progeny from the same tetrad, with telomere length
equilibrated at 26uC. (A) Analysis of cdc9-1 induced telomere elongation in pif1D and pif1-m2 (loss of nPif1) backgrounds. (B) Telomere length analysis
of CDC9 and cdc9-1 in pif1 TLSSAES mutant backgrounds. The mutated TLSSAES loci with substituted amino acids in bold are shown above the blot
images. DNA standards (in kbp) shown at left.
doi:10.1371/journal.pgen.1004679.g003

BIR Requires Pif1 Phosphorylation and Leads to Telomere Lengthening
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Telomere lengthening in cdc9-1 requires functional
components of the BIR pathway

In addition to its roles in regulation of telomerase at telomeres

and DSBs [16,17], nPif1 also has been reported to have a role in

BIR [8]. The cdc9-1 mutation causes replicative ligase insuffi-

ciency which results in nicks as evidenced from accumulation of

unligated nascent DNA strands [20,33]. Passage of replication

forks through these nicks would lead to broken replication forks

[34] that would require homology-mediated repair, such as

homologous recombination or BIR. To test if BIR had any role

in telomere lengthening in cdc9-1 cells, we combined cdc9-1 with

deletions in genes encoding the major components of BIR

machinery, such as Rad51, Rad52, and Pol32. Indeed, we

observed that RAD51, RAD52, and POL32 were required for

the cdc9-1 induced telomere elongation (Figure 5A). Further, the

cdc9-1 induced accumulation of G2 cells was retained in pif1-4A

and pol32D backgrounds (Figure S3) despite the absence of

telomere lengthening (see Figures 3B and 5A), suggesting that

PIF1 and POL32 are downstream of the DDR activation in the

pathway leading to telomere elongation in cdc9-1 cells. Because

Pol32 and nPif1 are required specifically for BIR [7,8] but not for

homologous recombination, our data suggest that BIR plays a

major role in telomere elongation in cdc9-1 yeast.

To explore this hypothesis further we tested if the PCSS

complex (Psy3/Csm2/Shu1/Shu2) and Mph1 helicase, known to

regulate Rad51 filament formation and post-invasion steps in BIR

respectively [35,36,37], had an effect on telomere length in cdc9-1.

Deletion of PSY3 partially suppressed telomere elongation in cdc9-
1 cells (Figure 5B), consistent with the previously reported role for

the PCSS complex as a positive regulator of Rad51 filament

assembly on a processed DSB [35,36]. Mph1 disrupts D-loops

formed upon invasion of Rad51-covered ssDNA into a homologous

Figure 4. nPif1 is phosphorylated in cdc9-1 cells and this phosphorylation is required for telomere elongation. (A) nPif1 is
phosphorylated in cdc9-1 cells. Expression of PIF1-4myc results in two polypeptides. The species with the faster gel mobility corresponds to the
mitochondrial Pif1 (mPif1) and the slower migrating protein is nuclear Pif1 (nPif1). Pif1-4myc was immunoprecipitated (IPed) from CDC9 and cdc9-1
cells as well as from the control CDC9 PIF1 (no tag) strains. Immunoprecipitated material was treated with either Calf Intestinal Phosphatase (CIP) or l
phosphatase and compared to mock-treated samples (lanes 2 & 3) and analyzed by SDS-PAGE. (B) nPif1 phosphorylation in response to cdc9-1
depends on MEC1 and RAD53. Note, in this panel and all the experiments below only nuclear Pif1 was tagged with 4myc (the pif1-m2::URA3-pif1-m1-
4myc allele, see Table S1) and therefore the mitochondrial Pif1 was no longer visible on western blots. (C) TLSSAES phosphorylation in response to
cdc9-1. Note that the anti-P-Pif1 antibody has weak cross-reactivity with another DNA damage induced phosphorylation site on Pif1 (lane 4: cdc9-1
pif1-4A). However, this cross-reactivity is unrelated to TLSSAES as there is a significant difference between PIF1 cdc9-1 and pif1-4A cdc9-1 (compare
lanes 2 and 4) in the relative amount of the signal; see also panel D. (D) TLSSAES phosphorylation in response to cdc9-1 is MEC1-RAD53-dependent. In
panels (C–D), nPif1-4myc and nPif1-4A-4myc were immunoprecipitated using an anti-myc antibody (9E10) from cells with the genotypes as indicated
below, then treated or mock-treated with CIP phosphatase, resolved on SDS PAGE, transferred onto PVDF membrane, probed using an affinity
purified rabbit polyclonal antibody raised against VIDFYL(pT)LS(pS)AE (anti-P-Pif1, upper image on each panel) and then re-probed with 9E10 (anti-
myc, lower image).
doi:10.1371/journal.pgen.1004679.g004
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sequence [37] and MPH1 overexpression from the GAL1 promoter

inhibits BIR [38]. Overexpression of MPH1 in cdc9-1 cells resulted

in alleviation of telomere elongation (Figure 5C) consistent with the

hypothesis that telomere elongation is BIR-dependent. Thus, the

telomere elongation in cdc9-1 is genetically dependent on core

components of BIR machinery Rad51, Rad52, nPif1, Pol32 as well

as on its regulators Mph1 and the PCSS complex.

The DNA damage induced phosphorylation of nPif1 on
TLSSAES is required for its role in BIR

Since telomere elongation in response to cdc9-1 was dependent

on both BIR and nPif1 phosphorylation on TLSSAES, we tested if

the nPif1 TLSSAES phosphorylation was required for BIR using a

well-established system of galactose-inducible HO endonuclease

expression to generate a DSB [39] next to two selectable markers,

each located on either side of the break (see Figure 6A for details).

The KAN selectable marker on the centromere-proximal side of

the break was further separated into two non-functional fragments

on CHR VIIL and CHR IIR, such that a functional allele of KAN
would be restored only when BIR initiation at CHR IIR provided

the template for repair of DSB on CHR VIIL (Figure 6A).

Consistent with previously reported data [8], PIF1 cells were more

efficient at BIR than pif1-m2, and the pif1-4A mutants exhibited a

loss of function similar to pif1-m2 (Figure 6B). Both pol32 and

rad9 abrogated PIF1-dependent BIR (Figure 6B), suggesting that

nPif1 requires functional Pold and DDR to promote BIR. Since de
novo telomere addition is upregulated in pif1-4A cells [17] and

thus might compete with BIR for DSBs, we tested whether est2 or

yku80 mutations, which disrupt de novo telomere addition [18],

affected BIR in PIF1 and pif1-4A cells and found that the

increased de novo telomere addition in pif1-4A did not impede

BIR (Figure 6B). Therefore, the phosphorylation of nPif1 at the

TLSSAES locus is required specifically for its role in BIR that is

not affected by de novo telomere addition events that occur at

DSBs.

Longer telomeres in cdc44-5 and rrm3D strains are
further examples of BIR-dependent telomere elongation

Our hypothesis that cdc9-1 cells suffer from broken replication

forks as a result of replication passing through nicks is based on (i)

the known role of Cdc9 in replication as a ligase of newly

synthesized DNA strands [20], (ii) observed accumulation of

unligated nascent DNA strands in the cdc9-1 mutant [20,33]

which suggests nicks or single-stranded gaps, (iii) the established

fact that replication through a nick results in a broken replication

fork [34], and (iv) RAD9-dependent cell cycle arrest of cdc9-1
mutants at the non-permissive temperature [20,21] which can be

explained by the existence of broken replication forks. If the

hypothesis that broken replication forks repaired by BIR

contribute to telomere elongation is correct, then there should

be mutations in other components of replication machinery that

also result in longer telomeres due to increased breakage of

replication forks and activation of a DDR and BIR. Rrm3 is a

non-essential DNA helicase required for replication through

‘‘hard-to-replicate’’ regions and the loss of RRM3 results in a

higher rate of fork breakage, constitutive activation of a DDR, and

slight telomere elongation that is PIF1-dependent [40,41]. cdc44-
5 is a temperature-sensitive mutant allele of Replication Factor C

which operates as a PCNA clamp loader. At 30uC, cdc44-5
mutants possess longer telomeres and accumulate cells in G2 [23].

We analyzed both rrm3D and cdc44-5 for constitutive activation

of a DDR and telomere elongation, and the possible dependence

of the latter on Pol32 and nPif1. The DDR was constitutively

activated in both rrm3D and cdc44-5, with more pronounced

Rad53 phosphorylation observed in cdc44-5 cells (Figure S4A).

The slight telomere elongation in rrm3D was abolished by the

pif1-4A mutation and there was no further increase in telomere

length in rrm3D pol32D cells compared to either single mutant

alone (Figure S4B). Combining cdc44-5 with pol32D resulted in a

synthetic lethality (Figure S4C) suggesting that BIR might be

constitutively active in cdc44-5 and required for cell viability (or

Figure 5. BIR is required for telomere elongation in cdc9-1 cells. Telomere length analyses by teloblots, shown as sets of four samples
representing four spore progeny from the same tetrad grown at 26uC. (A) Analysis of cdc9-1 induced telomere elongation in the absence of the
essential components of BIR - Rad51, Rad52, or Pol32; (B) Telomere elongation in response to cdc9-1 is alleviated in a psy3 background. Notice that
variability in telomere length of cdc9 psy3 mutants was observed and therefore two tetrads representing most extreme examples are shown. (C) Over-
expression of MPH1 from a galactose-inducible promoter in cells propagated on galactose suppresses telomere elongation in cdc9-1 cells (see the set
of 4 samples marked gal on the right). The four spore progeny from the same tetrad were passaged for ,80 generations either on glucose (glu, the
GAL1 promoter is repressed) or on galactose (gal, the GAL1 promoter is induced) before the DNA samples were prepared and analyzed for telomere
length. DNA standards (in kbp) shown at left.
doi:10.1371/journal.pgen.1004679.g005
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that the combination of the two mutations could be too disruptive

for conventional replication). The extensive telomere lengthening

in cdc44-5 cells was strongly suppressed by the pif1-4A mutation

(Figure S4D). Therefore, both rrm3D and cdc44-5 resemble cdc9-
1 in their constitutive activation of DDR and longer telomere

phenotype and, like cdc9-1, telomere elongation in rrm3D cells is

dependent on the BIR components nPif1 and Pol32 and the long

telomere phenotype in cdc44-5 is dependent on nPif1.

Discussion

Here we report that the DNA damage-induced phosphorylation

of nPif1, previously found to be critical for its role in inhibiting

telomerase action at DSBs [17], is also required for functional BIR

which in turn promotes telomere elongation.

The role of the replicative ligase Cdc9 in DNA replication is

very well understood and its functional insufficiency in cdc9-1 cells

at the non-permissive temperature of 37uC leads to accumulation

of unligated nascent DNA strands and RAD9-dependent cell cycle

arrest [20,21,22,33]. Growth of cdc9-1 yeast at the semi-

permissive temperature of 26uC predicts residual post-replication

nicks: replication nicks are known to lead to DSBs as a result of

broken replication forks [34]. We used the cdc9-1 mutant allele to

study how cells cope with such replication-coupled DSBs.

We found that the longer telomere length in cdc9-1 cells stems

from the activation of BIR and depended upon Rad51, Rad52,

Pol32, and nPif1. The cdc9-1 induced telomere elongation was

also dependent on telomerase and therefore could not be

attributed solely to recombination involving telomeric DNA. We

Figure 6. The DNA damage induced phosphorylation of nPif1 is required for BIR. (A) A schematic of the BIR assay. The 39 fragment of KAN
on CHR VIIL and the 59 KAN fragment on CHR IIR possess 500 bp overlapping homologous sequence that can be used to initiate repair of the HO-
induced DSB on CHR VIIL by BIR. The repair by BIR requires ,100 kbp of the telomere proximal sequence on CHR IIR to be copied to CHR VIIL. The
repair event also results in reconstitution of a functional KAN allele as well as in a loss of the URA3 gene from the telomere VIIL. (B) The effect of pif1-
4A mutant allele on BIR in different genetic backgrounds. The frequency of BIR was scored as a ratio of G418R ura2 colonies to the total number of
cells plated (see Materials and Methods). For each genotype, at least three independent experiments were used to calculate BIR frequency. Error bars
represent standard deviations.
doi:10.1371/journal.pgen.1004679.g006
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postulate that the Rad51- and Rad52-dependence of telomere

elongation in cdc9-1 stems from constitutive activation of BIR, a

homology-based mechanism of DSB repair, which in turn affects

telomerase-dependent telomere elongation by either permitting a

window of opportunity for telomerase at telomeres (i.e. when BIR

forks reach chromosome ends) or via sequestration of nPif1 to BIR

forks and removal of Pif1-dependent inhibition of telomerase

access to telomeres.

BIR might not be the primary pathway of repair for broken

replication forks due to its increased mutagenesis rate [42,43]. A

broken replication fork is likely to be met by a fork coming from

the opposite direction so that a two-ended DSB is generated and

repaired via homologous recombination as suggested by Cortés-

Ledesma and Aguilera [34]. However, BIR might be more

common in yeast sub-telomeric regions containing genome

duplications and repetitive sequences [44], particularly if no

replication origin has been fired in the region between a broken

fork and the telomere downstream. BIR shares many similarities

with conventional replication [45], but the unique requirements

for Pol32 and nPif1 [7,8] as well as the use of conservative

replication synthesis [5,6] suggest structural and functional

differences between the replication forks in conventional replica-

tion and BIR. Because telomerase-dependent telomere lengthen-

ing is coupled to the passage of replication forks through telomeres

[12,13] this coupling could be different during BIR and result in

longer telomeres (Figure 7). In another scenario, two rounds of

replication fork passage through a telomere within the same S-

phase might be responsible for the longer telomeres in cdc9-1 cells.

First, a sub-telomeric origin is activated and a conventional

replication fork passes through a telomere followed by a potential

telomere elongation round. If a BIR fork moving towards telomere

is established and if a previously replicated terminal fragment is

not included in the repair, the BIR fork will pass through the same

telomere creating another opportunity for telomerase to add more

telomeric repeats. Therefore, two replication forks and potentially

two rounds of telomerase action may take place and could account

for the telomere elongation in cdc9-1 cells. Either scenario would

predict that BIR could affect telomere lengthening in cis but not in

trans, i.e. only the telomeres passed by BIR forks would undergo

additional lengthening. An alternative explanation of the telomere

elongation in cdc9-1 cells may stem from the effect of the DNA

damage response on the regulation of telomerase by nPif1. In cells

with no DNA damage, nPif1 inhibits telomerase at telomeres.

However, during a DDR nPif1 localizes to the sites of damage and

repair [8,17]. The involvement of nPif1 in DSB repair may reduce

its availability at all telomeres and result in a relief of the usual

Pif1-dependent inhibition of telomerase at telomeres. This latter

model would predict that the activation of BIR on a subset of

chromosomes would affect all the telomeres to the same extent, i.e.

the regulation would occur in trans.

Compromised DNA replication affects telomere
maintenance through DNA damage signaling

The DDR-dependence of telomere elongation in cdc9-1 cells

differed from the telomere elongation observed in cdc17-1 cells,

which is not DDR-dependent (Figure S1). We suggest that the

effect of cdc9-1 on telomere length is indirect, i.e. it is not due to

uncoordinated chromosome replication and telomerase-dependent

telomere lengthening. Instead, the DDR in cdc9-1 cells is required

for successful repair of broken replication forks via BIR that in

turn causes additional telomere lengthening. We propose that this

mechanism might explain previous reports that rrm3 mutants,

which suffer from replication fork pausing and breakage, also show

constitutive activation of Rad53 and longer telomeres [40,46]. A

combination of constitutive damage signaling and telomere

lengthening is also seen in cdc44-5 cells. It is unknown whether

the telomere lengthening in these mutants is DDR-dependent

(rrm3 cells require RAD53 for their viability [46]), but the

telomere elongation in both mutants was dependent on the DNA

damage induced phosphorylation of nPif1. Pol32 was also required

for longer telomeres in rrm3 cells and the synthetic lethality

between cdc44-5 and pol32D suggests a possibility that BIR is

critical for cdc44-5 cell viability. In the genome-wide screens for S.
cerevisiae deletion mutants causing telomere lengthening or

shortening phenotypes, many genes that are relevant to DNA

metabolism through replication, repair or chromatin structure

have been reported [47,48]. We suggest that like cdc9-1, the

telomere length effects of some of these mutations may result from

constitutive generation of DNA damage.

The dependency of the cdc9-1 induced telomere lengthening on

the DNA damage signaling is likely to be more complex than the

requirement of the signaling kinases for nPif1 phosphorylation.

The checkpoint activation is also necessary for the cell cycle arrest

to ensure the completion of BIR [43], and therefore is also

required for BIR fork passage through telomeres before the cells

can enter mitosis. The signaling is also required for re-localization

of the telomere bound proteins Sir3 and Ku in response to DNA

damage [30]. This event might be relevant to the cdc9-1 induced

telomere lengthening as the latter was reduced in the sir mutants

and abolished in the yku70 and yku80 backgrounds (Figure S2).

The DNA damage induced changes in telomeric chromatin may

affect telomerase access to telomeres so that telomerase is recruited

to a larger number of telomeres and/or it is allowed longer time to

elongate each telomere during S-phase, thereby increasing

telomere length in cells with constitutive DNA damage.

Implications of nPif1 regulation by DNA damage
signaling pathway for the preservation of genomic
integrity

Our findings suggest that the DDR-induced nPif1 phosphory-

lation does not only inhibit telomerase at DSBs as previously

demonstrated, but it also plays a pivotal role in promoting BIR at

broken replication forks and DSBs. Healing a broken DNA end by

de novo telomere addition leads to global re-arrangements or

partial loss of genetic material, thereby contributing to genome

instability. Therefore nPif1 regulation directed at telomerase

inhibition at DSBs [17] and facilitation of DSB repair via BIR (see

Figure 6B) serve together to ensure genome repair and preserva-

tion. At the same time, the increased telomerase activity on

telomeres as a result of an active BIR may have additional

biological significance. For example, the telomere elongation in

response to DNA damage could promote recruitment of additional

telomere-associated chromatin factors (Rap1, Rif1, Sir proteins,

etc.) that could in turn protect shorter telomeres against the DNA

repair machinery activated in response to DNA damage [19]. In

addition, the telomere lengthening via BIR could promote repair

of critically short telomeres that have previously eroded and

activated BIR in sub-telomeric regions. Since BIR leads to

telomere lengthening, it may boost telomerase-dependent elonga-

tion of critically short telomeres involved in BIR. This mechanism

could act in addition to the Tel1-mediated signaling which has

been reported to increase telomerase recruitment on a shortened

telomere [49,50]. On the other hand, longer telomeres are harder

to replicate as telomeric chromatin causes replication fork stalling

[33,41] and broken replication forks within telomeric repeats

would result in truncated telomeres. Truncated telomeres after

DSBs or as a result of active trimming [51] could therefore benefit

from repair by telomerase activity. Thus, dynamic telomere length
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adjustments in response to changing extracellular and intracellular

environment could have evolved to minimize genomic instability

and maximize cell fitness and survival.

In summary, we uncovered that telomerase-dependent telomere

elongation is modulated in response to DNA damage. Additional

elongation occurs as a result of active BIR that requires Mec1-

Rad53 dependent phosphorylation of nPif1. Therefore, nPif1 is a

multifunctional regulator of telomere synthesis: it inhibits telome-

rase at telomeres in cells with no DNA damage, whereas in cells

with DNA damage, its phosphorylation impairs telomerase action

at DSBs and at the same time promotes telomere synthesis via

BIR.

Materials and Methods

Yeast strains are described in Table S1.

Telomere length analysis (teloblots)
For genetic analysis of telomere length in different mutants,

teloblot analysis was performed on a minimum of 3 tetrads, often

4-6 tetrads, that originated from at least 2 independently

constructed parental strains. Relevant heterozygous diploids of

each genotype were sporulated and progeny of at least four tetrads

(at least two coming from each of the two diploids) were passaged

for ,80 generations at either 26uC (tetrads containing cdc9-1

Figure 7. Possible mechanisms for replication-coupled telomere synthesis by telomerase in CDC9 and cdc9-1 cells. Grey bars and grey
circles depict non-telomeric DNA and origins of replication within it respectively, whereas black bars correspond to telomeres. Green arrows
represent telomerase activity coupled to conventional DNA replication whereas red arrows indicate telomerase action coordinated with BIR. In wild-
type cells (see schematic at left), telomerase-dependent telomere elongation is coupled to conventional DNA replication of telomeric repeats (green
arrow). In cdc9-1 cells, nicks are present and replication through a nick would generate a broken replication fork with the remainder of the
chromosome either not replicated, when there is no active ARS between the nick and a telomere (middle schematic), or replicated if replication is
initiated within the region (schematic at right). The firing of replication origins (ARS) results in a passage of a conventional replication fork through the
telomere (green arrow at right) and may be accompanied by telomere elongation by telomerase. However, the broken telomere-containing arm may
be degraded/not involved in the repair of the broken DNA end on the other arm. Thus, in both cases, the repair in cdc9-1 cells would proceed in a
similar manner, via initiation of BIR that results in BIR-coupled action of telomerase at telomeres (red arrows). The telomeres in cdc9-1 cells could be
longer than in wild-type cells because the BIR-coupled telomerase activity (red arrows) is higher than when it is coordinated with conventional
replication. Another possibility is that during BIR telomerase is provided with two windows of opportunity (the pathway on the right): one is when a
conventional replication fork passes through a telomere (green arrow) and the other one is when the same telomere is replicated again by BIR (red
arrow).
doi:10.1371/journal.pgen.1004679.g007
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mutants) or 30uC (tetrads containing rrm3 or cdc44-5 mutants) on

YPD agar (or YPGal agar if induction of GAL1- promoter was

required), to equilibrate telomere length. Yeast genomic DNA was

purified, digested with KpnI, and resolved on 0.85% w/v agarose

gels. Southern blotting and hybridization were performed as

described previously [33]. The random-primer (Prime-It II Kit,

Stratagene) radiolabeled probe KL1 (recognizes the telomere

proximal 650 bp of Y9 repeats) was used for hybridization in the

KpnI experiments. In cases where slight variability in mutant

behavior was observed, more than one tetrad (or clone) for the

given combination of mutations was included in the corresponding

figures (see Figure 3B for cdc9-1 pif1-3A, Figure 5B for cdc9-1
psy3, Figure S1 for cdc17-1 rad53 sml1, and Figure S4 for cdc44-5
pif1-4A).

Immunoblotting
Yeast protein extracts were prepared using TCA precipitation

[52]. Proteins were resolved on SDS-PAGE and transferred to

PVDF membrane. Immunological detection was performed using

ECL+ kit (GE Healthcare) according to the manufacturer’s

instructions. Mouse monoclonal a-myc 9E10 (Covance), goat

polyclonal a-Rad53 yC-19 (Santa Cruz), and rabbit polyclonal a-

VIDFYL(pT)LS(pS)AE (custom made, QCB) antibodies were used

for Pif1-4myc, endogenous Rad53, and phosphorylated Pif1

detection respectively.

Phosphatase treatments
Pif1-4myc was immunoprecipitated from cleared cell lysates at

4uC. Yeast cells were homogenized by bead beating in Lysis Buffer

(25 mM HEPES (pH 7.5), 150 mM KCl, 1 mM EDTA, 1 mM

EGTA, 0.1% v/v NP-40, 10% v/v glycerol) with phosphatase

inhibitors (50 mM NaF, 50 mM sodium glycerophosphate) and

protease inhibitors (Compete, EDTA-free protease inhibitors

cocktail tablets, Roche). The lysates were cleared by centrifugation

(14K rpm, 209). Pif1-4Myc was immunoprecipitated by incubation

of cleared lysates with 1:150 dilution of a-myc antibody 9E10

(Covance) for 2 h followed by addition of Protein G agarose beads

(Sigma) for an additional 2 h. Beads were washed 3659 in the Lysis

Buffer and then rinsed in 16phosphatase buffer supplied with either

CIP or l phosphatase (NEB). Phosphatase treatments were performed

at room temperature in the corresponding buffers. Reactions were

stopped by addition of SDS-PAGE sample buffer and 59 boiling.

Break induced replication assay
Cells were patched on YPRaffinose plates and grown overnight.

Cells were re-suspended in YP broth to OD,1. Serial dilutions

were plated on YPD and YPGalactose agar. In 3 days,

YPGalactose plates were replica-plated onto minimal media

without uracil and on YPD+G418. The frequency of BIR was

scored as a ratio of G418R ura2 colonies to the total number of

cells plated (represented by the number of colonies on YPD plates).

At least two independently constructed strains for every genotype

were used and at least three repeats for each genotype were

performed to calculate standard deviations.

Supporting Information

Figure S1 DNA damage signaling is not involved in cdc17-1
telomere length phenotype. (A) Western blot analysis of Rad53

from WT, cdc9-1, and cdc17-1 cells. (B) Telomere length analysis

(teloblot) is of spore progeny grown for ,80 generations at 26uC.

Spores from the same tetrad (for rad9) or multiple spores with

similar genotypes (for rad53) were analyzed. Unlike in cdc9-1 cells

at the semi-permissive temperature, neither RAD9 nor RAD53 is

required for telomere lengthening in cdc17-1 cells. DNA standards

(in kbp) shown at left.

(EPS)

Figure S2 Genetic interactions between cdc9-1 and genes

encoding different components of telomeric chromatin. In each

gel panel, telomere length analysis (by Southern hybridization) is

shown for spore progeny from the same tetrad grown for ,80

generations at 26uC. DNA standards (in kbp) shown at left.

(EPS)

Figure S3 Accumulation of late S/G2 cells in cdc9-1 popula-

tions is not affected by either pif1-4A or pol32D mutation. FACS

analysis of log-phase cells grown at 26uC. The CDC9 alleles are

shown on the left and the PIF1 and POL32 alleles are shown

above the corresponding FACS profiles.

(EPS)

Figure S4 Analysis of telomere elongation in rrm3D and cdc44-
5 mutants. (A) Rad53 phosphorylation in rrm3D and cdc44-5
analyzed by Western blotting; (B) Analysis of rrm3D-dependent

telomere elongation in pif1-4A and pol32D backgrounds; (C)

cdc44-5 is synthetically lethal with pol32D. Progenies of 6 tetrads

germinated for 72 h at 30uC (on the left) and their corresponding

genotypes (on the right) shown. wt, 44, 32, and D represents spore

genotypes CDC44 POL32, cdc44-5 POL32, CDC44 pol32D, and

cdc44-5 pol32D respectively. (D) Analysis of cdc44-5 dependent

telomere lengthening in a pif1-4A background. DNA standards (in

kbp) shown at left.

(EPS)

Table S1 Saccharomyces cerevisiae strains used in the study.

(DOCX)
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