105 research outputs found

    Phylogenetic diversity analysis of Trichoderma species based on internal transcribed spacer (ITS) marker

    Get PDF
    The phylogeny of Trichoderma and the phylogenetic relationships of its species was investigated by maximum parsimony analysis and distance analysis of DNA sequences from multiple genetic loci 18S rDNA sequence analysis suggests that the genus Trichoderma evolved at the same time as Hypomyces and Fusarium and thus about 110 Myr ago 28S rDNA sequence analysis shows that the genus Trichoderma is part of a monophyletic branch within the Hypocreaceae. Most isolates of the genus Trichoderma were found to act as mycoparasites of many economically important aerial and soil-borne plant pathogens. Trichoderma has attained importance as a substitute for chemical pesticides and hence an attempt was intended to corroborate the positive relatedness of molecular and morphological characters. Two fungal strains, Trichoderma koningii Tk-5201/CSAU and Trichoderma virens Tvi-4177/CSAU were isolated from a soil sample collected from CSA Farm, Kanpur district of Uttar Pradesh, India. The universal primers (internal transcribed spacer, ITS) were used for the amplification of 18S rRNA gene fragment and strains were thus characterized with the help of ITS marker. It is proposed that the identified strains T. koningii Tk-5201/CSAU and T. virens Tvi-4177/CSAU be assigned as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit rRNA databases. The sequence was deposited in GenBank with the accession numbers KC800923 and KC800924, respectively. Thus an integrated approach of morphological and molecular markers can be employed to identify a superior strain of Trichoderma for its commercial exploitation.Keywords: 18S ribosomal RNA gene, Trichoderma, phylogenetic analysis, internal transcribed spacer (ITS), DNA sequencing, GenBankAfrican Journal of Biotechnology, Vol. 13(3), pp. 449-455, 15 January, 201

    DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway

    Get PDF
    Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy

    Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease

    Get PDF
    Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins

    G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae

    Get PDF
    G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection

    Genome-Wide Analyses of Recombination Prone Regions Predict Role of DNA Structural Motif in Recombination

    Get PDF
    HapMap findings reveal surprisingly asymmetric distribution of recombinogenic regions. Short recombinogenic regions (hotspots) are interspersed between large relatively non-recombinogenic regions. This raises the interesting possibility of DNA sequence and/or other cis- elements as determinants of recombination. We hypothesized the involvement of non-canonical sequences that can result in local non-B DNA structures and tested this using the G-quadruplex DNA as a model. G-quadruplex or G4 DNA is a unique form of four-stranded non-B DNA structure that engages certain G-rich sequences, presence of such motifs has been noted within telomeres. In support of this hypothesis, genome-wide computational analyses presented here reveal enrichment of potential G4 (PG4) DNA forming sequences within 25618 human hotspots relative to 9290 coldspots (p<0.0001). Furthermore, co-occurrence of PG4 DNA within several short sequence elements that are associated with recombinogenic regions was found to be significantly more than randomly expected. Interestingly, analyses of more than 50 DNA binding factors revealed that co-occurrence of PG4 DNA with target DNA binding sites of transcription factors c-Rel, NF-kappa B (p50 and p65) and Evi-1 was significantly enriched in recombination-prone regions. These observations support involvement of G4 DNA in recombination, predicting a functional model that is consistent with duplex-strand separation induced by formation of G4 motifs in supercoiled DNA and/or when assisted by other cellular factors

    Resistance of Asian Cryptococcus neoformans Serotype A Is Confined to Few Microsatellite Genotypes

    Get PDF
    Contains fulltext : 109375.pdf (publisher's version ) (Open Access)BACKGROUND: Cryptococcus neoformans is a pathogenic yeast that causes cryptococcosis, a life threatening disease. The prevalence of cryptococcosis in Asia has been rising after the onset of the AIDS epidemic and estimates indicate more than 120 cases per 1,000 HIV-infected individuals per year. Almost all cryptococcal disease cases in both immunocompromised and immunocompetent patients in Asia are caused by C. neoformans var. grubii. Epidemiological studies on C. neoformans in pan-Asia have not been reported. The present work studies the genetic diversity of the fungus by microsatellite typing and susceptibility analysis of approximately 500 isolates from seven Asian countries. METHODOLOGY/PRINCIPAL FINDINGS: Genetic diversity of Asian isolates of C. neoformans was determined using microsatellite analysis with nine microsatellite markers. The analysis revealed eight microsatellite complexes (MCs) which showed different distributions among geographically defined populations. A correlation between MCs and HIV-status was observed. Microsatellite complex 2 was mainly associated with isolates from HIV-negative patients, whereas MC8 was associated with those from HIV-positive patients. Most isolates were susceptible to amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole, but 17 (3.4%) and 10 (2%) were found to be resistant to 5-flucytosine and fluconazole, respectively. Importantly, five Indonesian isolates (approximately 12.5% from all Indonesian isolates investigated and 1% from the total studied isolates) were resistant to both antifungals. The majority of 5-flucytosine resistant isolates belonged to MC17. CONCLUSIONS: The findings showed a different distribution of genotypes of C. neoformans var. grubii isolates from various countries in Asia, as well as a correlation of the microsatellite genotypes with the original source of the strains and resistance to 5-flucytosine

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Genetic Enhancement Perspectives and Prospects for Grain Nutrients Density

    Get PDF
    Diet-induced micronutrient malnutrition continues to be a major challenge globally, especially in the developing world. With the ever-increasing population, it becomes a daunting task to feed millions of mouths with nutritious food. It is time to reorient agricultural systems to produce quality food to supply the calorie and nutrient requirements needed by the human body. Biofortification is the process of improving micronutrients density by genetic means. It is cheaper and sustainable and complements well with the nutrient supplementation and fortification— the short-term strategies that are currently deployed to address the micronutrient malnutrition. Sorghum is one of the important food crops globally, adapted to semi-arid tropics, and there is increased awareness on its nutritional importance. Further, there is great opportunity to improve sorghum for nutritional quality. This chapter deals about the genetic enhancement perspectives and prospects for improving the nutritional quality with main emphasis on grain micronutrient density in sorghum
    corecore