40 research outputs found

    NMR-Based Prostate Cancer Metabolomics

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Springer in Methods in Molecular Biology on 22 May 2018.Available online: https://doi.org/10.1007/978-1-4939-7845-8_14acceptedVersio

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer

    Get PDF
    In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids—such as carnitine (1.79 fold in EOC, p<0.001; 1.88 fold in MOC, p<0.001), acetylcarnitine (1.75 fold in EOC, p<0.001; 2.39 fold in MOC, p<0.001), and butyrylcarnitine (3.62 fold, p<0.0094 in EOC; 7.88 fold, p<0.001 in MOC). There were also significant changes in phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold; p<0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p<0.001) and several isoforms of tocopherols. We have also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients

    Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma

    Get PDF
    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced

    PH and Temperature Effects in Cytochrome C Peroxidase

    No full text

    Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S

    No full text
    Studies on horseradish peroxidase C and other haem peroxidases have been carried out on selected mutants in the distal haem cavity providing insight into the functional importance of the distal residues. Recent work has demonstrated that proximal structural features can also exert an important influence in determining the electronic structure of the haem pocket. To extend our understanding of the significance of proximal characteristics in regulating haem properties the proximal Thr171Ser mutant has been constructed. Thr171 is an important linking residue between the structural proximal Ca2+ ion and the proximal haem ligand, in particular the methyl group of Thr171 interdigitates with other proximal residues in the core of the enzyme. Although the mutation induces no significant changes to the functional properties of the enzyme, electronic absorption and resonance Raman spectroscopy reveal that it has a highly selective affect on the reduced state of the enzyme, effectively stabilizing it, whilst the electronic properties of the Fe(III) state unchanged and essentially identical to those of the native protein. This results in a significant change in the Fe2+/Fe3+ redox potential of the mutant. It is concluded that the unusual properties of the Thr171Ser mutant reflect the loss of a structural restraint in the proximal haem pocket that allows 'slippage' of the proximal haem ligand, but only in the reduced state. This is a remarkably subtle and specific effect that appears to increase the flexibility of the reduced state of the mutant compared to that of the wild-type protein

    NMR-Based Prostate Cancer Metabolomics

    Get PDF
    Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer-related death among men, worldwide. A major unsolved clinical challenge in prostate cancer is the ability to accurately distinguish indolent cancer types from the aggressive ones. Reprogramming of metabolism is now a widely accepted hallmark of cancer development, where cancer cells must be able to convert nutrients to biomass while maintaining energy production. Metabolomics is the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues, or organisms. Nuclear magnetic resonance (NMR) spectroscopy is commonly applied in metabolomics studies of cancer. This chapter provides protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine), and intact tissue, with concurrent advice for optimal biobanking and sample preparation procedures

    NMR-Based Prostate Cancer Metabolomics

    Get PDF
    Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer-related death among men, worldwide. A major unsolved clinical challenge in prostate cancer is the ability to accurately distinguish indolent cancer types from the aggressive ones. Reprogramming of metabolism is now a widely accepted hallmark of cancer development, where cancer cells must be able to convert nutrients to biomass while maintaining energy production. Metabolomics is the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues, or organisms. Nuclear magnetic resonance (NMR) spectroscopy is commonly applied in metabolomics studies of cancer. This chapter provides protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine), and intact tissue, with concurrent advice for optimal biobanking and sample preparation procedures
    corecore