558 research outputs found
Seminal Plasma Enhances Cervical Adenocarcinoma Cell Proliferation and Tumour Growth In Vivo
Cervical cancer is one of the leading causes of cancer-related death in women in sub-Saharan Africa. Extensive evidence has shown that cervical cancer and its precursor lesions are caused by Human papillomavirus (HPV) infection. Although the vast majority of HPV infections are naturally resolved, failure to eradicate infected cells has been shown to promote viral persistence and tumorigenesis. Furthermore, following neoplastic transformation, exposure of cervical epithelial cells to inflammatory mediators either directly or via the systemic circulation may enhance progression of the disease. It is well recognised that seminal plasma contains an abundance of inflammatory mediators, which are identified as regulators of tumour growth. Here we investigated the role of seminal plasma in regulating neoplastic cervical epithelial cell growth and tumorigenesis. Using HeLa cervical adenocarcinoma cells, we found that seminal plasma (SP) induced the expression of the inflammatory enzymes, prostaglandin endoperoxide synthase (PTGS1 and PTGS2), cytokines interleukin (IL) -6, and -11 and vascular endothelial growth factor-A(VEGF-A). To investigate the role of SP on tumour cell growth in vivo, we xenografted HeLa cells subcutaneously into the dorsal flank of nude mice. Intra-peritoneal administration of SP rapidly and significantly enhanced the tumour growth rate and size of HeLa cell xenografts in nude mice. As observed in vitro, we found that SP induced expression of inflammatory PTGS enzymes, cytokines and VEGF-A in vivo. Furthermore we found that SP enhances blood vessel size in HeLa cell xenografts. Finally we show that SP-induced cytokine production, VEGF-A expression and cell proliferation are mediated via the induction of the inflammatory PTGS pathway
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
Use of DNA technology in forensic dentistry
The established importance of Forensic Dentistry for human identification, mainly when there is little remaining material to perform such identification (e.g., in fires, explosions, decomposing bodies or skeletonized bodies), has led dentists working with forensic investigation to become more familiar with the new molecular biology techniques. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article presents a literature review referring to the main studies on Forensic Dentistry that involve the use of DNA for human identification, and makes an overview of the evolution of this technology in the last years, highlighting the importance of molecular biology in forensic sciences
Quality of life following liver transplantation: a comparative study between Familial Amyloid Neuropathy and liver disease patients
<p>Abstract</p> <p>Background</p> <p>It has been demonstrated in many studies that quality of life can be improved after liver transplantation in patients with liver disease. Nevertherless quality of life improvement in specific groups of transplantated patients such as those with Familial Amyloid Polineuropathy hasn't yet been explored. The present study aimed to compare the change in quality of life following liver transplantation between patients with Familial Amyloid Polineuropathy (FAP) and patients with liver disease.</p> <p>Results</p> <p>Patient's mental quality of life showed an improvement in all liver disease patients, and a worsening in FAP patients, resulting in a significant difference between the two groups. Regarding physical quality of life, although a similar improvement was seen in both groups, FAP patients had significantly less improvement than the sub-group of decompensated liver disease (Child-Pugh B and C).</p> <p>Conclusion</p> <p>It is concluded that liver transplantation has a less beneficial impact in FAP patient's physical quality of life, probably because they are not so much disabled by their disease at the moment of liver transplantation. The lesser improvement in mental quality of life of FAP patients may be due to their particular psychological profile and greater expectations towards transplantation.</p
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Expression of oestrogen receptors, ERα, ERβ, and ERβ variants, in endometrial cancers and evidence that prostaglandin F may play a role in regulating expression of ERα
<p>Abstract</p> <p>Background</p> <p>Endometrial cancer is the most common gynaecological malignancy; risk factors include exposure to oestrogens and high body mass index. Expression of enzymes involved in biosynthesis of oestrogens and prostaglandins (PG) is often higher in endometrial cancers when compared with levels detected in normal endometrium. Oestrogens bind one of two receptors (ERα and ERβ) encoded by separate genes. The full-length receptors function as ligand-activated transcription factors; splice variant isoforms of ERβ lacking a ligand-binding domain have also been described. PGs act in an autocrine or paracrine manner by binding to specific G-protein coupled receptors.</p> <p>Methods</p> <p>We compared expression of ERs, progesterone receptor (PR) and cyclooxygenase-2 (COX-2) in stage 1 endometrial adenocarcinomas graded as well (G1), moderately (G2) or poorly (G3) differentiated (n ≥ 10 each group) using qRTPCR, single and double immunohistochemistry. We used endometrial adenocarcinoma cell lines to investigate the impact of PGF2α on expression of ERs and PR.</p> <p>Results</p> <p>Full length ERβ (ERβ1) and two ERβ variants (ERβ2, ERβ5) were expressed in endometrial cancers regardless of grade and the proteins were immunolocalised to the nuclei of cells in both epithelial and stromal compartments. Immunoexpression of COX-2 was most intense in cells that were ERα<sup>neg/low</sup>. Expression of PR in endometrial adenocarcinoma (Ishikawa) cell lines and tissues broadly paralleled that of ERα. Treatment of adenocarcinoma cells with PGF2α reduced expression of ERα but had no impact on ERβ1. Cells incubated with PGF2α were unable to increase expression of PR mRNA when they were incubated with E2.</p> <p>Conclusion</p> <p>We have demonstrated that ERβ5 protein is expressed in stage 1 endometrial adenocarcinomas. Expression of three ERβ variants, including the full-length protein is not grade-dependent and most cells in poorly differentiated cancers are ERβ<sup>pos</sup>/ERα<sup>neg</sup>. We found evidence of a link between COX-2, its product PGF2α, and expression of ERα and PR that sheds new light on the cross talk between steroid and PG signalling pathways in this disease.</p
- …