252 research outputs found

    Nutritional support of children with chronic liver disease

    Get PDF
    Anorexia, malabsorption and metabolic derangements contribute to the malnutrition that occurs in most children with chronic liver disease. Nutritional support should be started early in the management of these children with the co-operation of a paediatric dietitian to improve quality of life and decrease post-transplant mortality.Nutritional assessment entails a detailed dietary history, physical examination and anthropometry. Weight-based anthropometric measures are unreliable while mid-upper-arm circumference and skinfold thickness provide more reliable estimates of nutritional status. Special investigations such as serum vitamin levels and skeletal X-rays further guide management.High energy (130 - 150% of recommended daily intake (RDI)) and protein (3 - 4 g/kg/day) intakes are recommended. Diets are usually enriched with medium-chain fatty acids because of their better absorption in cholestatic liver disease. High-dose fat-soluble vitamin supplements are given while care is taken to avoid toxicity. Initial doses are two to three times the RDI and then adjusted according to serum levels or international normalised ratio (INR) in the case of vitamin K.Children with good appetites are fed orally. Feeds should be more regular than for other children to avoid prolonged periods of fasting and improve energy intake. Some children require supplementary nasogastric feeds to increase energy intake and avoid overnight fastin

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    Interobserver reliability and diagnostic performance of Chiari II malformation measures in MR imaging—part 2

    Get PDF
    PURPOSE: Brain MR imaging is essential in the assessment of Chiari II malformation in clinical and research settings concerning spina bifida. However, the interpretation of MR images of the malformation is not always straightforward. Morphometric analyses of the extent of Chiari II malformation may improve the assessment. In an attempt to select appropriate morphometric measures for this purpose, we investigated the interobserver reliability and diagnostic performance of several morphometric measures of Chiari II malformation on MR images. METHODS: Brain MR images of 79 children [26 with open spinal dysraphism, 17 with closed spinal dysraphism, and 36 without spinal dysraphism; mean age 10.6 (SD 3.2; range, 6-16) years] were evaluated. All children had been assessed for Chiari II malformation (defined as cerebellar herniation in combination with open spinal dysraphism; n = 23). Three observers blindly and independently reviewed the MR images for 21 measures of the cerebellum, brainstem, and posterior fossa in three planes. The interobserver reliability was assessed by an agreement index (AI = 1 - RRE) and the diagnostic performance by receiver operating characteristic analyses. RESULTS: Reliability was good for most measures, except for the degree of herniation of the vermis and tonsil. Most values differed statistically significantly between children with and without Chiari II malformation. The measures mamillopontine distance and cerebellar width showed excellent diagnostic performance. CONCLUSIONS: Morphometric measures may reliably quantify the morphological distortions of Chiari II malformation on MR images and provide additional tools to assess the severity of Chiari II malformation in clinical and research settings

    Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Get PDF
    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii

    Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton

    Get PDF
    The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ∼4–6 µm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle

    A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling

    Get PDF
    Nanoparticles are now emerging as a novel class of autophagy activators. Functionalized single-walled carbon nanotubes (f-SWCNTs) are valuable nanomaterials in many industries. This article is designed to assess the autophagic response for f-SWCNTs exposure in vitro and in vivo. A few types of f-SWCNTs were screened in human lung adenocarcinoma A549 cells for the autophagic response and related pathways in vitro. Formation of autophagosomes and LC3-II upregulation were confirmed on the basis of electron microscopy and LC3 western blotting for COOH-CNT, but not for PABS-CNT and PEG-CNT. MTT assay showed marked increase in cell viability, when COOH-CNT was added to cells in the presence of autophagy inhibitor 3MA, ATG6 or TSC2 siRNA. Consistent with the involvement of the Akt–TSC1/2–mTOR pathway, the phosphorylation levels of mTOR, mTOR's substrate S6 and Akt were shown significantly decreased in A549 cells on treatment with COOH-CNT using western blotting. What's more, autophagy inhibitor 3MA significantly reduced the lung edema in vivo. In a word, COOH-CNT induced autophagic cell death in A549 cells through the AKT–TSC2–mTOR pathway and caused acute lung injury in vivo. Inhibition of autophagy significantly reduced COOH-CNT-induced autophagic cell death and ameliorated acute lung injury in mice, suggesting a potential remedy to address the growing concerns on the safety of nanomaterials

    Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches.</p> <p>Methods</p> <p>Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM<sub>2.5</sub>) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM<sub>10 </sub>or PM<sub>2.5 </sub>levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11%) per 10 μg/m<sup>3 </sup>increase of annual mean PM<sub>2.5 </sub>concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67%) and 0.73% (95% CI 0.47–0.93%) per 10 μg/m<sup>3 </sup>increase of PM<sub>10</sub>. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY).</p> <p>Results</p> <p>The annual population-weighted-modeled exposure to locally emitted PM<sub>2.5 </sub>in Tallinn was 11.6 μg/m<sup>3</sup>. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy among the actual cases is around 13 years. As for the morbidity, the short-term effects of air pollution were estimated to result in an additional 71 (95% CI 43–104) respiratory and 204 (95% CI 131–260) cardiovascular hospitalizations per year. The biggest external costs are related to the long-term effects on mortality: this is on average €150 (95% CI 40–260) million annually. In comparison, the costs of short-term air-pollution driven hospitalizations are small €0.3 (95% CI 0.2–0.4) million.</p> <p>Conclusion</p> <p>Sectioning the city for analysis and using GIS systems can help to improve the accuracy of air pollution health impact estimations, especially in study areas with poor air pollution monitoring data but available dispersion models.</p

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment

    Get PDF
    Background: Neighborhood deprivation has been consistently linked to poor individual health outcomes; however, studies exploring the mechanisms involved in this association are scarce. The objective of this study was to investigate whether objective measures of the physical environment mediate the association between neighborhood socioeconomic deprivation and biomarkers of health in Britain. Methods: We linked individual-level biomarker data from Understanding Society: The UK Household Longitudinal Survey (2010-2012) to neighborhood-level data from different governmental sources. Our outcome variables were forced expiratory volume in 1 s (FEV1%; n=16,347), systolic blood pressure (SBP; n=16,846), body mass index (BMI; n=19,417), and levels of C-reactive protein (CRP; n=11,825). Our measure of neighborhood socioeconomic deprivation was the Carstairs index, and the neighborhood-level mediators were levels of air pollutants (sulphur dioxide [SO2], particulate matter [PM10], nitrogen dioxide [NO2], and carbon monoxide [CO]), green space, and proximity to waste and industrial facilities. We fitted a multilevel mediation model following a multilevel structural equation framework in MPlus v7.4, adjusting for age, gender, and income. Results: Residents of poor neighborhoods and those exposed to higher pollution and less green space had worse health outcomes. However, only SO2exposure significantly and partially mediated the association between neighborhood socioeconomic deprivation and SBP, BMI, and CRP. Conclusion: Reducing air pollution exposure and increasing access to green space may improve population health but may not decrease health inequalities in Britain
    corecore