295 research outputs found

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Natural Form of Noncytolytic Flexible Human Fc as a Long-Acting Carrier of Agonistic Ligand, Erythropoietin

    Get PDF
    Human IgG1 Fc has been widely used as a bioconjugate, but exhibits shortcomings, such as antibody- and complement-mediated cytotoxicity as well as decreased bioactivity, when applied to agonistic proteins. Here, we constructed a nonimmunogenic, noncytolytic and flexible hybrid Fc (hyFc) consisting of IgD and IgG4, and tested its function using erythropoietin (EPO) conjugate, EPO-hyFc. Despite low amino acid homology (20.5%) between IgD Fc and IgG4 Fc, EPO-hyFc retained “Y-shaped” structure and repeated intravenous administrations of EPO-hyFc into monkeys did not generate EPO-hyFc-specific antibody responses. Furthermore, EPO-hyFc could not bind to FcγR I and C1q in contrast to EPO-IgG1 Fc. In addition, EPO-hyFc exhibited better in vitro bioactivity and in vivo bioactivity in rats than EPO-IgG1 Fc, presumably due to the high flexibility of IgD. Moreover, the mean serum half-life of EPO-hyFc(H), a high sialic acid content form of EPO-hyFc, was approximately 2-fold longer than that of the heavily glycosylated EPO, darbepoetin alfa, in rats. More importantly, subcutaneous injection of EPO-hyFc(H) not only induced a significantly greater elevation of serum hemoglobin levels than darbepoetin alfa in both normal rats and cisplatin-induced anemic rats, but also displayed a delayed time to maximal serum level and twice final area-under-the-curve (AUClast). Taken together, hyFc might be a more attractive Fc conjugate for agonistic proteins/peptides than IgG1 Fc due to its capability to elongate their half-lives without inducing host effector functions and hindering bioactivity of fused molecules. Additionally, a head-to-head comparison demonstrated that hyFc-fusion strategy more effectively improved the in vivo bioactivity of EPO than the hyperglycosylation approach

    Cage Matching: Head to Head Competition Experiments of an Invasive Plant Species from Different Regions as a Means to Test for Differentiation

    Get PDF
    Many hypotheses are prevalent in the literature predicting why some plant species can become invasive. However, in some respects, we lack a standard approach to compare the breadth of various studies and differentiate between alternative explanations. Furthermore, most of these hypotheses rely on ‘changes in density’ of an introduced species to infer invasiveness. Here, we propose a simple method to screen invasive plant species for potential differences in density effects between novel regions. Studies of plant competition using density series are a fundamental tool applied to virtually every aspect of plant population ecology to better understand evolution. Hence, we use a simple density series with substitution contrasting the performance of Centaurea solstitialis in monoculture (from one region) to mixtures (seeds from two regions). All else being equal, if there is no difference between the introduced species in the two novel regions compared, Argentina and California, then there should be no competitive differences between intra and inter-regional competition series. Using a replicated regression design, seeds of each species were sown in the greenhouse at 5 densities in monoculture and mixed and grown till onset of flowering. Centaurea seeds from California had higher germination while seedlings had significantly greater survival than Argentina. There was no evidence for density dependence in any measure for the California region but negative density dependence was detected in the germination of seeds from Argentina. The relative differences in competition also differed between regions with no evidence of differential competitive effects of seeds from Argentina in mixture versus monoculture while seeds from California expressed a relative cost in germination and relative growth rate in mixtures with Argentina. In the former instance, lack of difference does not mean ‘no ecological differences’ but does suggest that local adaptation in competitive abilities has not occurred. Importantly, this method successfully detected differences in the response of an invasive species to changes in density between novel regions which suggests that it is a useful preliminary means to explore invasiveness

    Regression and stabilization of advanced murine atherosclerotic lesions: a comparison of LDL lowering and HDL raising gene transfer strategies

    Get PDF
    Both reductions in atherogenic lipoproteins and increases in high-density lipoprotein (HDL) levels may affect atherosclerosis regression. Here, the relative potential of low-density lipoprotein (LDL) lowering and HDL raising gene transfer strategies to induce regression of complex murine atherosclerotic lesions was directly compared. Male C57BL/6 LDL receptor (LDLr)−/− mice were fed an atherogenic diet (1.25% cholesterol and 10% coconut oil) to induce advanced atherosclerotic lesions. A baseline group was killed after 6 months and remaining mice were randomized into a control progression (Adnull or saline), an apolipoprotein (apo) A-I (AdA-I), an LDLr (AdLDLr), or a combined apo A-I/LDLr (AdA-I/AdLDLr) adenoviral gene transfer group and followed-up for another 12 weeks with continuation of the atherogenic diet. Gene transfer with AdLDLr decreased non-HDL cholesterol levels persistently by 95% (p < 0.001) compared with baseline. This drastic reduction of non-HDL cholesterol levels induced lesion regression by 28% (p < 0.001) in the aortic root and by 25% (p < 0.05) in the brachiocephalic artery at 12 weeks after transfer. Change in lesion size was accompanied by enhanced plaque stability, as evidenced by increased collagen content, reduced lesional macrophage content, a drastic reduction of necrotic core area, and decreased expression of inflammatory genes. Elevated HDL cholesterol following AdA-I transfer increased collagen content in lesions, but did not induce regression. Apo A-I gene transfer on top of AdLDLr transfer resulted in additive effects, particularly on inflammatory gene expression. In conclusion, drastic lipid lowering induced by a powerful gene transfer strategy leads to pronounced regression and stabilization of advanced murine atherosclerosis

    Comparison of two recombinant erythropoietin formulations in patients with anemia due to end-stage renal disease on hemodialysis: A parallel, randomized, double blind study

    Get PDF
    BACKGROUND: Recombinant human erythropoietin (EPO) is used for the treatment of last stage renal anemia. A new EPO preparation was obtained in Cuba in order to make this treatment fully nationally available. The aim of this study was to compare the pharmacokinetic, pharmacodynamic and safety properties of two recombinant EPO formulations in patients with anemia due to end-stage renal disease on hemodialysis. METHODS: A parallel, randomized, double blind study was performed. A single 100 IU/Kg EPO dose was administered subcutaneously. Heberitro (Heber Biotec, Havana, formulation A), a newly developed product and Eprex (CILAG AG, Switzerland, formulation B), as reference treatment were compared. Thirty-four patients with anemia due to end-stage renal disease on hemodialysis were included. Patients had not received EPO previously. Serum EPO level was measured by enzyme immunoassay (EIA) during 120 hours after administration. Clinical and laboratory variables were determined as pharmacodynamic and safety criteria until 216 hours. RESULTS: Both groups of patients were similar regarding all demographic and baseline characteristics. EPO kinetics profiles were similar for both formulations; the pharmacokinetic parameters were very close (i.e., AUC: 4667 vs. 4918 mIU.h/mL; Cmax: 119.1 vs. 119.7 mIU/mL; Tmax: 13.9 vs. 18.1 h; half-life, 20.0 vs. 22.5 h for formulations A and B, respectively). The 90% confidence intervals for the ratio between both products regarding these metrics were close to the 0.8 – 1.25 range, considered necessary for bioequivalence. Differences did not reach 20% in any case and were not determined by a formulation effect, but probably by a patients' variability effect. Concerning pharmacodynamic features, a high similitude in reticulocyte counts increments until 216 hours and the percentage decrease in serum iron until 120 hours was observed. There were no differences between formulations regarding the adverse events and their intensity. The more frequent events were pain at injection site (35.3%) and hypertension (29%). Additionally, further treatment of the patients with the study product yielded satisfactory increases in hemoglobin and hematocrit values. CONCLUSION: The formulations are comparable. The newly developed product should be acceptable for long-term application

    Caveolin contributes to the modulation of basal and β-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: A novel pleiotropic effect

    Get PDF
    The number of people taking statins is increasing across the globe, highlighting the Importance of fully understanding statins effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (pleiotropic effects). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 μM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2]¡) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16and troponin I at Ser23/24was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive Inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered ß-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae

    Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints

    Get PDF
    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions

    Matrix Metalloproteinase 1: Role in Sarcoma Biology

    Get PDF
    In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05). The percentage lung metastatic volume at 5 weeks (p = 0.08) and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04) and increased angiogenesis (p<0.01). These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely
    corecore