1,412 research outputs found

    Experimental river delta size set by multiple floods and backwater hydrodynamics

    Get PDF
    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars

    Aspects of Discrete Breathers and New Directions

    Full text link
    We describe results concerning the existence proofs of Discrete Breathers (DBs) in the two classes of dynamical systems with optical linear phonons and with acoustic linear phonons. A standard approach is by continuation of DBs from an anticontinuous limit. A new approach, which is purely variational, is presented. We also review some numerical results on intraband DBs in random nonlinear systems. Some non-conventional physical applications of DBs are suggested. One of them is understanding slow relaxation properties of glassy materials. Another one concerns energy focusing and transport in biomolecules by targeted energy transfer of DBs. A similar theory could be used for describing targeted charge transfer of nonlinear electrons (polarons) and, more generally, for targeted transfer of several excitations (e.g. Davydov soliton).Comment: to appear in the Proceedings of NATO Advanced Research Workshop "Nonlinearity and Disorder: Theory and Applications", Tashkent,Uzbekistan,October 1-6, 200

    Field Theory for a Deuteron Quantum Liquid

    Full text link
    Based on general symmetry principles we study an effective Lagrangian for a neutral system of condensed spin-1 deuteron nuclei and electrons, at greater-than-atomic but less-than-nuclear densities. We expect such matter to be present in thin layers within certain low-mass brown dwarfs. It may also be produced in future shock-wave-compression experiments as an effective fuel for laser induced nuclear fusion. We find a background solution of the effective theory describing a net spin zero condensate of deuterons with their spins aligned and anti-aligned in a certain spontaneously emerged preferred direction. The spectrum of low energy collective excitations contains two spin waves with linear dispersions -- like in antiferromagnets -- as well as gapped longitudinal and transverse modes related to the Meissner effect -- like in superconductors. We show that counting of the Nambu-Goldstone modes of spontaneously broken internal and space-time symmetries obeys, in a nontrivial way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We discuss thermodynamic properties of the condensate, and its potential manifestation in the low-mass brown dwarfs.Comment: 19 LaTeX pages; v2: 2 refs added, JHEP versio

    A national survey of services for the prevention and management of falls in the UK

    Get PDF
    Background: The National Health Service (NHS) was tasked in 2001 with developing service provision to prevent falls in older people. We carried out a national survey to provide a description of health and social care funded UK fallers services, and to benchmark progress against current practice guidelines. Methods: Cascade approach to sampling, followed by telephone survey with senior member of the fall service. Characteristics of the service were assessed using an internationally agreed taxonomy. Reported service provision was compared against benchmarks set by the National Institute for Health and Clinical Excellence (NICE). Results: We identified 303 clinics across the UK. 231 (76%) were willing to participate. The majority of services were based in acute or community hospitals, with only a few in primary care or emergency departments. Access to services was, in the majority of cases, by health professional referral. Most services undertook a multi-factorial assessment. The content and quality of these assessments varied substantially. Services varied extensively in the way that interventions were delivered, and particular concern is raised about interventions for vision, home hazard modification, medication review and bone health. Conclusion: The most common type of service provision was a multi-factorial assessment and intervention. There were a wide range of service models, but for a substantial number of services, delivery appears to fall below recommended NICE guidance

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al

    A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes

    Get PDF
    GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al

    GRB jet structure and the jet break

    Get PDF
    We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, θc. We fit model and observed afterglow light curves with a smoothly-broken power-law function with a free-parameter κ that describes the sharpness of the break. We find that the jet break is sharper (κ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of 0.1 ≲ κ ≲ 4.6, whereas profiles with a smooth-edged core have a narrower range of 0.1 ≲ κ ≲ 2.2 when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within θc, whereas for smooth-edged jets, κ is more strongly dependent on the size of θc. Using a sample of 20 GRBs, we find 9 candidate smooth-edged jet structures and 8 candidate sharp-edged jet structures, while the remaining 3 are consistent with either. The shape of the jet break, as measured by the sharpness parameter κ, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time

    Can spacetime curvature induced corrections to Lamb shift be observable?

    Full text link
    The Lamb shift results from the coupling of an atom to vacuum fluctuations of quantum fields, so corrections are expected to arise when the spacetime is curved since the vacuum fluctuations are modified by the presence of spacetime curvature. Here, we calculate the curvature-induced correction to the Lamb shift outside a spherically symmetric object and demonstrate that this correction can be remarkably significant outside a compact massive astrophysical body. For instance, for a neutron star or a stellar mass black hole, the correction is \sim 25% at a radial distance of 4GM/c24GM/c^2, \sim 16% at 10GM/c210GM/c^2 and as large as \sim 1.6% even at 100GM/c2100GM/c^2, where MM is the mass of the object, GG the Newtonian constant, and cc the speed of light. In principle, we can look at the spectra from a distant compact super-massive body to find such corrections. Therefore, our results suggest a possible way of detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more discussions added, version to be published in JHE

    Search algorithms as a framework for the optimization of drug combinations

    Get PDF
    Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms, originally developed for digital communication, modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs with only one third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio
    corecore