182 research outputs found

    Engineering Silicon Oxide by Argon Ion Implantation for High Performance Resistance Switching

    Get PDF
    We report that implanting argon ions into a film of uniform atomic layer deposition (ALD)-grown SiOx enables electroforming and switching within films that previously failed to electroform at voltages <15 V. We note an implantation dose dependence of electroforming success rate: electroforming can be eliminated when the dosage is high enough. Our devices are capable of multi-level switching during both set and reset operations, and multiple resistance states can be retained for more than 30,000 s under ambient conditions. High endurance of more than 7 million (7.9 × 106) cycles is achieved alongside low switching voltages (±1 V). Comparing SiOx fabricated by this approach with sputtered SiOx we find similar conduction mechanisms between the two materials. Our results show that intrinsic SiOx switching can be achieved with defects created solely by argon bombardment; in contrast to defects generated during deposition, implantation generated defects are potentially more controllable. In the future, noble ion implantation into silicon oxide may allow optimization of already excellent resistance switching devices

    Probing energy transfer in an ensemble of silicon nanocrystals

    Get PDF
    Time-resolved photoluminescence measurements of silicon nanocrystals formed by ion implantation of silicon into silicon dioxide reveal multi-exponential luminescence decays. Three discrete time components are apparent in the rise and decay data, which we associate with different classes of nanocrystals. The values of decay time are remarkably constant with emission energy, but the relative contributions of the three components vary strongly across the luminescence band. In keeping with the quantum confinement model for luminescence, we assign emission at high energies to small nanocrystals and that at low energies to large nanocrystals. By deconvolving the decay data over the full emission band, it is possible to study the migration of excitation from smaller (luminescence donor) to larger (luminescence acceptor) nanocrystals. We propose a model of diffusion of excitation between neighboring nanocrystals, with long lifetime emission being from the largest nanocrystal in the local neighborhood. Our data also allow us to study the saturation of acceptor nanocrystals, effectively switching off excitation transfer, and Auger recombination in non-interacting nanocrystals. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622151

    Evaluation of ecosystem-based marine management strategies based on risk assessment

    Get PDF
    Abstract This study presents a comprehensive and generic framework that provides a typology for the identification and selection of consistently defined ecosystem-based management measures and allows a coherent evaluation of these measures based on their performance to achieve policy objectives. The performance is expressed in terms of their reduction of risk of an adverse impact on the marine ecosystem. This typology consists of two interlinked aspects of a measure, i.e. the “Focus” and the “Type”. The “Focus” is determined by the part of the impact chain (Driver–Pressure–State) the measure is supposed to mitigate or counteract. The “Type” represents the physical measure itself in terms of how it affects the impact chain directly; we distinguish Spatio-temporal distribution controls, Input and Output controls, Remediation and Restoration measures. The performance of these measures in terms of their reduction in risk of adverse impacts was assessed based on an explicit consideration of three time horizons: past, present and future. Application of the framework in an integrated management strategy evaluation of a suite of measures, shows that depending on the time horizon, different measures perform best. “Past” points to measures targeting persistent pressures (e.g. marine litter) from past activities. “Present” favors measures targeting a driver (e.g. fisheries) that has a high likelihood of causing adverse impacts. “Future” involves impacts that both have a high likelihood of an adverse impact, as well as a long time to return to pre-impacted condition after the implementation of appropriate management, e.g. those caused by permanent infrastructure or persistent pressures such as marine litter or specific types of pollution

    Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    Get PDF
    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb -centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth

    A global meta-analysis of ecological effects from offshore marine artificial structures

    Get PDF
    AbstractMarine artificial structures (MAS), including oil and gas installations (O&amp;G) and offshore wind farms (OWFs), have a finite operational period. Selecting the most suitable decommissioning options when reaching end-of-life remains a challenge, in part because their effects are still largely undetermined. Whether decommissioned structures could act (sensu ‘function’) as artificial reefs (ARs) and provide desired ecological benefits is of particular interest. Here we use a meta-analysis approach of 531 effect sizes from 109 articles to assess the ecological effects of MAS, comparing O&amp;G and OWFs to shipwrecks and ARs, with a view to inform their decommissioning. This synthesis demonstrates that while MAS can bring ecological benefits, important idiosyncrasies exist, with differences emerging between MAS types, habitat types, taxa and ecological metrics. Notably, we find limited conclusive evidence that O&amp;G and OWFs would provide significant ecological benefits if decommissioned as ARs. We conclude that decommissioning options aimed at repurposing MAS into ARs may not provide the intended benefits.</jats:p

    Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems

    Get PDF
    A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (ιpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin
    • 

    corecore