23 research outputs found

    Developing a Professional Studies Curriculum to Support Veterinary Professional Identity Formation

    Get PDF
    Professional studies teaching in medical and veterinary education is undergoing a period of change. Traditional approaches, aiming to teach students professional values and behaviors, are being enhanced by curricula designed to support students' professional identity formation. This development offers the potential for improving student engagement and graduates' mental well-being. The veterinary professional identity associated with emotional resilience and success in practice incorporates complexity in professional decision making and the importance of context on behaviors and actions. The veterinarian must make decisions that balance the sometimes conflicting needs of patient, clients, veterinarian, and practice; their subsequent actions are influenced by environmental challenges such as financial limitations, or stress and fatigue caused by a heavy workload. This article aims to describe how curricula can be designed to support the development of such an identity in students. We will review relevant literature from medical education and the veterinary profession to describe current best practices for supporting professional identity formation, and then present the application of these principles using the curriculum at the Royal Veterinary College (RVC) as a case study. Design of a “best practice” curriculum includes sequential development of complex thinking rather than notions of a single best solution to a problem. It requires managing a hidden curriculum that tends to reinforce a professional identity conceived solely on clinical diagnosis and treatment. It includes exposure to veterinary professionals with different sets of professional priorities, and those who work in different environments. It also includes the contextualization of taught content through reflection on workplace learning opportunities

    Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird

    Get PDF
    The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible

    Update on global ozone: past, present, and future

    Get PDF
    This chapter deals with the evolution of global ozone outside of the polar regions. The increase of ozone depleting substance (ODS) concentrations caused the large ozone decline observed from 1980 to the mid- 1990s. Since the late 1990s, concentrations of ODSs have been declining due to the successful implementation of the Montreal Protocol. As reported in the last Assessment, global ozone levels have remained stable since 2000. Ozone columns observed in the last four years have largely remained in the range observed since 2000. Over the next decades we expect increasing global-mean stratospheric ozone columns, as ODSs decline further. Climate change and emissions of greenhouse gases, especially carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), also affect the evolution of global stratospheric ozone, particularly in the second half of the 21st century, when ODS concentrations are expected to be low

    Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAM-Chem and the CCMI Models

    Get PDF
    ©2017. American Geophysical Union. All Rights Reserved. Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HO x . In remote marine environments, such as the tropical western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 parts per trillion by volume (pptv) near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NO x emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access
    corecore