2,210 research outputs found

    Nuclear forward scattering in particulate matter: dependence of lineshape on particle size distribution

    Full text link
    In synchrotron Moessbauer spectroscopy, the nuclear exciton polariton manifests itself in the lineshape of the spectra of nuclear forward scattering (NFS) Fourier-transformed from time domain to frequency domain. This lineshape is generally described by the convolution of two intensity factors. One of them is Lorentzian related to free decay. We derived the expressions for the second factor related to Frenkel exciton polariton effects at propagation of synchrotron radiation in Moessbauer media. Parameters of this Frenkelian shape depend on the spatial configuration of Moessbauer media. In a layer of uniform thickness, this factor is found to be a simple hypergeometric function. Next, we consider the particles spread over a 2D surface or diluted in non-Moessbauer media to exclude an overlap of ray shadows by different particles. Deconvolving the purely polaritonic component of linewidths is suggested as a simple procedure sharpening the experimental NFS spectra in frequency domain. The lineshapes in these sharpened spectra are theoretically expressed via the parameters of the particle size distributions (PSD). Then, these parameters are determined through least-squares fitting of the line shapes.Comment: 13 pages, 12 figure

    On the Relationship Between Ultrasonic and Micro-Structural Properties of Imperfect Interfaces in Layered Solids

    Get PDF
    The interaction of ultrasonic waves with interfaces formed by two non-conforming, rough surfaces in contact has been the subject of numerous investigations [1–10]. The motivations behind these studies have been various: from the assessment of the real area of contact between two rough surfaces [1], to the modeling of crack closure near the tip of a fatigue crack [4]; from the identification of the nature of interfacial imperfections in kissing and partial bonds [6], to the generation of ultrasonic waves [8]. In most of these studies, the characterization of the interfacial properties has been attempted by studying the reflection of longitudinal and shears waves at normal incidence. Only recently, the problem concerning the interaction of ultrasonic waves with realistic complex systems such as that formed by two neighboring imperfect interfaces has been addressed. Lavrentyev and Rokhlin [9, 10] used ultrasonic spectroscopy to evaluate the interfacial conditions from the spectra of longitudinal and shear waves reflected normally from the interfaces

    Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases

    Get PDF
    IntroductionThe ultrastructure and cellular composition of thrombi has a profound effect on the outcome of acute ischemic stroke (AIS), coronary (CAD) and peripheral artery disease (PAD). Activated neutrophils release a web-like structure composed mainly of DNA and citrullinated histones, called neutrophil extracellular traps (NET) that modify the stability and lysability of fibrin. Here, we investigated the NET-related structural features of thrombi retrieved from different arterial localizations and their interrelations with routinely available clinical data.Patients and methodsThrombi extracted from AIS (n = 78), CAD (n = 66) or PAD (n = 64) patients were processed for scanning electron microscopy, (immune)stained for fibrin, citrullinated histone H3 (cH3) and extracellular DNA. Fibrin fiber diameter, cellular components, DNA and cH3 were measured and analyzed in relation to clinical parameters.ResultsDNA was least present in AIS thrombi showing a 2.5-fold lower DNA/fibrin ratio than PAD, whereas cH3 antigen was unvaryingly present at all locations. The NET content of thrombi correlated parabolically with systemic inflammatory markers and positively with patients' age. The median platelet content was lower in PAD (2.2%) than in either AIS (3.9%) or CAD (3.1%) and thrombi from smokers contained less platelets than non-smokers. Fibrin fibers were significantly thicker in male patients with CAD (median fiber diameter 76.3 nm) compared to AIS (64.1 nm) or PAD (62.1 nm) and their diameter correlated parabolically with systemic inflammatory markers.ConclusionsThe observed NET-related variations in thrombus structure shed light on novel determinants of thrombus stability that eventually affect both the spontaneous progress and therapeutic outcome of ischemic arterial diseases

    High sugar content of European commercial baby foods and proposed updates to existing recommendations

    Get PDF
    The aim was to determine whether commercial baby foods marketed within Europe (up to 36 months of age) have inappropriate formulation and high sugar content and to provide suggestions to update European regulations and recommendations as part of a nutrient profile model developed for this age group. The latter was produced following recommended World Health Organization (WHO) steps, including undertaking a rapid literature review. Packaging information from countries across the WHO European region was used to determine mean energy from total sugar by food category. The percentage of products containing added sugar and the percentage of savoury meal‐type products containing pureed fruit were also calculated. A total of 2,634 baby foods from 10 countries were summarised: 768 sold in the United Kingdom, over 200 each from Denmark (319), Spain (241), Italy (430) and Malta (243) and between 99–200 from Hungary, Norway, Portugal, Estonia and Slovenia. On average, approximately a third of energy in baby foods in these European countries came from total sugar, and for most food categories, energy from sugar was higher than 10%. Use of added sugars was widespread across product categories, with concentrated fruit juice most commonly used. Savoury meal‐type purees did not contain added sugars except in United Kingdom and Malta; however, fruit as an ingredient was found in 7% of savoury meals, most frequently seen in UK products. Clear proposals for reducing the high sugar content seen in commercial baby foods were produced. These suggestions, relating to both content and labelling, should be used to update regulations and promote product reformulation

    Effect of solution saturation state and temperature on diopside dissolution

    Get PDF
    Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields [Formula: see text] where the Mg-H exchange coefficient, n = 1.39, the apparent activation energy, E(a )= 332 kJ mol(-1), and the apparent rate constant, k = 10(41.2 )mol diopside cm(-2 )s(-1). Fits to the data with the pit nucleation model suggest that diopside dissolution proceeds through retreat of steps developed by nucleation of pits created homogeneously at the mineral surface or at defect sites, where homogeneous nucleation occurs at lower degrees of saturation than defect-assisted nucleation. Rate expressions for each mechanism (i) were fit to [Formula: see text] where the step edge energy (α) for homogeneously nucleated pits were higher (275 to 65 mJ m(-2)) than the pits nucleated at defects (39 to 65 mJ m(-2)) and the activation energy associated with the temperature dependence of site density and the kinetic coefficient for homogeneously nucleated pits (E(b-homogeneous )= 2.59 × 10(-16 )mJ K(-1)) were lower than the pits nucleated at defects (E(b-defect assisted )= 8.44 × 10(-16 )mJ K(-1))

    Carbon Monoxide Promotes Respiratory Hemoproteins Iron Reduction Using Peroxides as Electron Donors

    Get PDF
    The physiological role of the respiratory hemoproteins (RH), hemoglobin and myoglobin, is to deliver O2 via its binding to their ferrous (FeII) heme-iron. Under variety of pathological conditions RH proteins leak to blood plasma and oxidized to ferric (FeIII, met) forms becoming the source of oxidative vascular damage. However, recent studies have indicated that both metRH and peroxides induce Heme Oxygenase (HO) enzyme producing carbon monoxide (CO). The gas has an extremely high affinity for the ferrous heme-iron and is known to reduce ferric hemoproteins in the presence of suitable electron donors. We hypothesized that under in vivo plasma conditions, peroxides at low concentration can assist the reduction of metRH in presence of CO. The effect of CO on interaction of metRH with hydrophilic or hydrophobic peroxides was analyzed by following Soret and visible light absorption changes in reaction mixtures. It was found that under anaerobic conditions and low concentrations of RH and peroxides mimicking plasma conditions, peroxides served as electron donors and RH were reduced to their ferrous carboxy forms. The reaction rates were dependent on CO as well as peroxide concentrations. These results demonstrate that oxidative activity of acellular ferric RH and peroxides may be amended by CO turning on the reducing potential of peroxides and facilitating the formation of redox-inactive carboxyRH. Our data suggest the possible role of HO/CO in protection of vascular system from oxidative damage

    Organic Geochemical Studies. I. Molecular Criteria for Hydrocarbon Genesis

    Get PDF
    In recent years the search for life-forms at the earliest periods of geological time has been continued not only at the morphological level but also at the molecular level. This has been possible as a result of the increase in the biochemical knowledge and with the advent of analytical techniques that are capable of describing the intimate molecular architecture of individual molecules in acute detail. The fundamental premises upon which this organic geochemical approach rest are the following: that certain molecules, possessing a characteristic structural skeleton, show a reasonable stability to degradation over long periods of geological time; that their structural specificity can be understood in terms of known biosynthetic sequences; and that their formation by any non-biological means is of negligible probability. In this manuscript it is proposed to critically re-examine these premises and to establish criteria whereby one can differentiate molecules derived from biological systems from those that have their origin in non-biological processes. The importance of establishing such criteria lies in the significance these criteria have in determining whether life exists, or has existed, on other planets. Within the very near future it may be possible to provide an initial answer to this question when the first lunar samples are returned to the earth for analysis
    • 

    corecore