29 research outputs found
Comparison of the fracture resistance of endodontically treated teeth restored with prefabricated posts and composite resin cores with different post lenghts
OBJECTIVE: This study evaluated the fracture strengths of endodontically treated teeth restored with prefabricated posts with different post lengths. MATERIAL AND METHODS: Thirty freshly extracted canines were endodontically treated. They were randomly divided into groups of 10 teeth and prepared according to 3 experimental protocols, as follows; Group 1/3 PP: teeth restored with prefabricated post and composite resin core (Z250) with post length of 5.0mm; Group 1/2 PP and Group 2/3 PP: teeth restored with prefabricated post and composite resin core (Z250) with different combinations of post length of 7.5mm and 10mm, respectively. All teeth were restored with full metal crowns. The fracture resistance (N) was measured in a universal testing machine (crosshead speed 0.5mm/min) at 45 degrees to the tooth long axis until failure. Data were analyzed by one-way analysis of variance (alpha=.05). RESULTS: The one-way analysis of variance demonstrated no significant difference among the different post lengths (P>;.05) (Groups 1/3 PP = 405.4 N, 1/2 PP = 395.6 N, 2/3 PP = 393.8 N). Failures occurred mainly due to core fracture. CONCLUSIONS: The results of this study showed that an increased post length in teeth restored with prefabricated posts did not significantly increase the fracture resistance of endodontically treated teeth
Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH
This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids
Lichen response to ammonia deposition defines the footprint of a penguin rookery
Ammonia volatilized from penguin rookeries is a major nitrogen source in Antarctic coastal terrestrial ecosystems. However, the spatial extent of ammonia dispersion from rookeries and its impacts have not been quantified previously. We measured ammonia concentration in air and lichen ecophysiological response variables proximate to an AdĂšlie penguin rookery at Cape Hallett, northern Victoria Land. Ammonia emitted from the rookery was 15N-enriched (ÎŽ15N value +6.9) and concentrations in air ranged from 36â75 ”g mâ3 at the rookery centre to 0.05 ”g mâ3 at a distance of 15.3 km. ÎŽ15N values and rates of phosphomonoesterase (PME) activity in the lichens Usnea sphacelata and Umbilicaria decussata were strongly negatively related to distance from the rookery and PME activity was positively related to thallus N:P mass ratio. In contrast, the lichen Xanthomendoza borealis, which is largely restricted to within an area 0.5 km from the rookery perimeter, had high N, P and 15N concentrations but low PME activity suggesting that nutrient scavenging capacity is suppressed in highly eutrophicated sites. An ammonia dispersion model indicates that ammonia concentrations sufficient to significantly elevate PME activity and ÎŽ15N values (â„0.1 ”g NH3 mâ3) occurred over c. 40â300 km2 surrounding the rookery suggesting that penguin rookeries potentially can generate large spatial impact zones. In a general linear model NH3 concentration and lichen species identity were found to account for 72 % of variation in the putative proportion of lichen thallus N originating from penguin derived NH3. The results provide evidence of large scale impact of N transfer from a marine to an N-limited terrestrial ecosystem