838 research outputs found

    Preliminary efficacy of a brief family intervention to prevent declining quality of life secondary to parental bone marrow transplantation

    Get PDF
    The primary purpose of this research was to develop and evaluate the efficacy and feasibility of a brief, cost-effective family-focused intervention to promote adaptive coping and quality of life throughout a parent's bone marrow transplantation (BMT). Targeted outcomes were cohesion, decreased use of avoidance coping, open communication and effective management of emotional distress. Participants included an intervention group of 31 families and 29 families in a control group who received usual care. Each family included the BMT recipient, a partner/caregiver and children 10-18 years old. The intervention included two dyadic sessions for the BMT recipient and the partner/caregiver, one individual session for the caregiver and two digital video discs (DVDs) for children. Statistical analyses indicated that the intervention had a positive impact on at least one aspect of the adaptation of each family member. Caregivers reported the most distress but benefitted least from the intervention, whereas recipients and children reported improvement in distress. Ratings of satisfaction/acceptability were high, with 97% responding that they would recommend the intervention to others. Plans for future research include increased intervention intensity for the caregiver, a larger more diverse sample and implementation over an extended period post BMT

    Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance

    Full text link
    Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and neurophysiological systems such as the receptors in crickets[7] and crayfish[8]. Although it is fundamentally important as a mechanism of coherent signal amplification, stochastic resonance is yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators, which can play an important role in the realization of controllable high-speed nanomechanical memory cells. Our nanomechanical systems were excited into a dynamic bistable state and modulated in order to induce controllable switching; the addition of white noise showed a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems paves the way for exploring macroscopic quantum coherence and tunneling, and controlling nanoscale quantum systems for their eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure

    Variation in the Large-Scale Organization of Gene Expression Levels in the Hippocampus Relates to Stable Epigenetic Variability in Behavior

    Get PDF
    Despite sharing the same genes, identical twins demonstrate substantial variability in behavioral traits and in their risk for disease. Epigenetic factors-DNA and chromatin modifications that affect levels of gene expression without affecting the DNA sequence-are thought to be important in establishing this variability. Epigenetically-mediated differences in the levels of gene expression that are associated with individual variability traditionally are thought to occur only in a gene-specific manner. We challenge this idea by exploring the large-scale organizational patterns of gene expression in an epigenetic model of behavioral variability.To study the effects of epigenetic influences on behavioral variability, we examine gene expression in genetically identical mice. Using a novel approach to microarray analysis, we show that variability in the large-scale organization of gene expression levels, rather than differences in the expression levels of specific genes, is associated with individual differences in behavior. Specifically, increased activity in the open field is associated with increased variance of log-transformed measures of gene expression in the hippocampus, a brain region involved in open field activity. Early life experience that increases adult activity in the open field also similarly modifies the variance of gene expression levels. The same association of the variance of gene expression levels with behavioral variability is found with levels of gene expression in the hippocampus of genetically heterogeneous outbred populations of mice, suggesting that variation in the large-scale organization of gene expression levels may also be relevant to phenotypic differences in outbred populations such as humans. We find that the increased variance in gene expression levels is attributable to an increasing separation of several large, log-normally distributed families of gene expression levels. We also show that the presence of these multiple log-normal distributions of gene expression levels is a universal characteristic of gene expression in eurkaryotes. We use data from the MicroArray Quality Control Project (MAQC) to demonstrate that our method is robust and that it reliably detects biological differences in the large-scale organization of gene expression levels.Our results contrast with the traditional belief that epigenetic effects on gene expression occur only at the level of specific genes and suggest instead that the large-scale organization of gene expression levels provides important insights into the relationship of gene expression with behavioral variability. Understanding the epigenetic, genetic, and environmental factors that regulate the large-scale organization of gene expression levels, and how changes in this large-scale organization influences brain development and behavior will be a major future challenge in the field of behavioral genomics

    Meiotic Transmission of Drosophila pseudoobscura Chromosomal Arrangements

    Get PDF
    Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments

    Decision, Sensation, and Habituation: A Multi-Layer Dynamic Field Model for Inhibition of Return

    Get PDF
    Inhibition of Return (IOR) is one of the most consistent and widely studied effects in experimental psychology. The effect refers to a delayed response to visual stimuli in a cued location after initial priming at that location. This article presents a dynamic field model for IOR. The model describes the evolution of three coupled activation fields. The decision field, inspired by the intermediate layer of the superior colliculus, receives endogenous input and input from a sensory field. The sensory field, inspired by earlier sensory processing, receives exogenous input. Habituation of the sensory field is implemented by a reciprocal coupling with a third field, the habituation field. The model generates IOR because, due to the habituation of the sensory field, the decision field receives a reduced target-induced input in cue-target-compatible situations. The model is consistent with single-unit recordings of neurons of monkeys that perform IOR tasks. Such recordings have revealed that IOR phenomena parallel the activity of neurons in the intermediate layer of the superior colliculus and that neurons in this layer receive reduced input in cue-target-compatible situations. The model is also consistent with behavioral data concerning temporal expectancy effects. In a discussion, the multi-layer dynamic field account of IOR is used to illustrate the broader view that behavior consists of a tuning of the organism to the environment that continuously and concurrently takes place at different spatiotemporal scales

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Relative contribution of various chronic diseases and multi-morbidity to potential disability among Dutch elderly

    Get PDF
    BACKGROUND: The amount of time spent living with disease greatly influences elderly people’s wellbeing, disability and healthcare costs, but differs by disease, age and sex. METHODS: We assessed how various single and combined diseases differentially affect life years spent living with disease in Dutch elderly men and women (65+) over their remaining life course. Multistate life table calculations were applied to age and sex-specific disease prevalence, incidence and death rates for the Netherlands in 2007. We distinguished congestive heart failure, coronary heart disease (CHD), breast and prostate cancer, colon cancer, lung cancer, diabetes, COPD, stroke, dementia and osteoarthritis. RESULTS: Across ages 65, 70, 75, 80 and 85, CHD caused the most time spent living with disease for Dutch men (from 7.6 years at age 65 to 3.7 years at age 85) and osteoarthritis for Dutch women (from 11.7 years at age 65 to 4. 8 years at age 85). Of the various co-occurrences of disease, the combination of diabetes and osteoarthritis led to the most time spent living with disease, for both men (from 11.2 years at age 65 to 4.9 -years at age 85) and women (from 14.2 years at age 65 to 6.0 years at age 85). CONCLUSIONS: Specific single and multi-morbid diseases affect men and women differently at different phases in the life course in terms of the time spent living with disease, and consequently, their potential disability. Timely sex and age-specific interventions targeting prevention of the single and combined diseases identified could reduce healthcare costs and increase wellbeing in elderly people

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of <it>Curcuma longa</it>. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy.</p> <p>Methods</p> <p>Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an <it>in vitro </it>APC activity assay.</p> <p>Results</p> <p>We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells.</p> <p>Conclusions</p> <p>We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin.</p
    • …
    corecore