1,974 research outputs found

    Nanotunneling Junction-based Hyperspectal Polarimetric Photodetector and Detection Method

    Get PDF
    A photodetector, detector array, and method of operation thereof in which nanojunctions are formed by crossing layers of nanowires. The crossing nanowires are separated by a few nm thick electrical barrier layer which allows tunneling. Each nanojunction is coupled to a slot antenna for efficient and frequency-selective coupling to photo signals. The nanojunctions formed at the intersection of the crossing wires defines a vertical tunneling diode that rectifies the AC signal from a coupled antenna and generates a DC signal suitable for reforming a video image. The nanojunction sensor allows multi/hyper spectral imaging of radiation within a spectral band ranging from terahertz to visible light, and including infrared (IR) radiation. This new detection approach also offers unprecedented speed, sensitivity and fidelity at room temperature

    High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1.

    Get PDF
    Polybromo-1 (PBRM1) is an important tumor suppressor in kidney cancer. It contains six tandem bromodomains (BDs), which are specialized structures that recognize acetyl-lysine residues. While BD2 has been found to bind acetylated histone H3 lysine 14 (H3K14ac), it is not known whether other BDs collaborate with BD2 to generate strong binding to H3K14ac, and the importance of H3K14ac recognition for the molecular and tumor suppressor function of PBRM1 is also unknown. We discovered that full-length PBRM1, but not its individual BDs, strongly binds H3K14ac. BDs 2, 4, and 5 were found to collaborate to facilitate strong binding to H3K14ac. Quantitative measurement of the interactions between purified BD proteins and H3K14ac or nonacetylated peptides confirmed the tight and specific association of the former. Interestingly, while the structural integrity of BD4 was found to be required for H3K14ac recognition, the conserved acetyl-lysine binding site of BD4 was not. Furthermore, simultaneous point mutations in BDs 2, 4, and 5 prevented recognition of H3K14ac, altered promoter binding and gene expression, and caused PBRM1 to relocalize to the cytoplasm. In contrast, tumor-derived point mutations in BD2 alone lowered PBRM1\u27s affinity to H3K14ac and also disrupted promoter binding and gene expression without altering cellular localization. Finally, overexpression of PBRM1 variants containing point mutations in BDs 2, 4, and 5 or BD2 alone failed to suppress tumor growth in a xenograft model. Taken together, our study demonstrates that BDs 2, 4, and 5 of PBRM1 collaborate to generate high affinity to H3K14ac and tether PBRM1 to chromatin. Mutations in BD2 alone weaken these interactions, and this is sufficient to abolish its molecular and tumor suppressor functions

    High-Sensitivity GaN Microchemical Sensors

    Get PDF
    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection

    Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer.

    Get PDF
    Whereas VHL inactivation is a primary event in clear cell renal cell carcinoma (ccRCC), the precise mechanism(s) of how this interacts with the secondary mutations in tumor suppressor genes, including PBRM1, KDM5C/JARID1C, SETD2, and/or BAP1, remains unclear. Gene expression analyses reveal that VHL, PBRM1, or KDM5C share a common regulation of interferon response expression signature. Loss of HIF2α, PBRM1, or KDM5C in VHL-/-cells reduces the expression of interferon stimulated gene factor 3 (ISGF3), a transcription factor that regulates the interferon signature. Moreover, loss of SETD2 or BAP1 also reduces the ISGF3 level. Finally, ISGF3 is strongly tumor-suppressive in a xenograft model as its loss significantly enhances tumor growth. Conversely, reactivation of ISGF3 retards tumor growth by PBRM1-deficient ccRCC cells. Thus after VHL inactivation, HIF induces ISGF3, which is reversed by the loss of secondary tumor suppressors, suggesting that this is a key negative feedback loop in ccRCC. © 2018, Liao et al

    Predictors of Academic Procrastination in Asian International College Students

    Get PDF
    This study examined the relationships among acculturative stress, coping styles, self-efficacy, English language proficiency, and various demographic characteristics as predictors of procrastination behavior in Asian International students (N = 255) studying in the United States. Results of multiple logistic regression indicated that a collective coping style, avoidant coping style, academic self-efficacy, and English language proficiency were the significant predictors of academic procrastination in non-Indian Asian international students. Implications for college student affairs professionals and researchers are addressed

    Optimal Receiver Antenna Location in Indoor Environment Using Dynamic Differential Evolution and Genetic Algorithm

    Get PDF
    [[abstract]]Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Placenta increta causing hemoperitoneum in the 26th week of pregnancy: a case report

    Get PDF
    Abstract Introduction Placenta increta is a serious complication of pregnancy. We describe a case leading to uterine rupture associated with massive intra-abdominal hemorrhage. Case presentation A 34-year-old Caucasian Albanian woman, gravida 2, para 1, was admitted to the emergency department of our hospital for acute abdominal pain associated with profound secondary anemia. An anatomopathological diagnosis of placenta increta destruens was made. An urgent hysterectomy was performed after resuscitation procedures, applied due to the severe anemia and the abdominal drama accompanying the case. Intra-operatively, a uterus-saving procedure was found to be impossible, and hysterectomy remained the only surgical option. The uterine structures were sent for further microscopic evaluation. On histological examination, deep trophoblastic infiltration of the uterine wall was observed, justifying the surgeon's decision. Our patient received blood transfusions and antibiotics. Her sutures were removed on the eighth postoperative day and she was discharged the following day in a stable condition. Conclusion This case, describing a patient with uterine rupture and massive hemorrhage, illustrates a serious and potentially fatal complication of placenta previa. In such cases, surgery is essential, and hysterectomy may be the only viable option.</p

    Factors associated with dental caries among institutionalized residents with schizophrenia in Taiwan: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little research has been done on the relationship between dental caries and the personal characteristics of institutionalized residents diagnosed with schizophrenia. This study investigates the individual and treatment factors associated with the dental caries among institutionalized residents with schizophrenia in Taiwan.</p> <p>Methods</p> <p>An oral health survey of institutionalized residents with schizophrenia in the largest public psychiatric hospital was conducted in Taiwan in 2006. Based on this data, multiple logistic analyses were used to determine the relationship between some explanatory variables and the outcome variables of dental caries among subjects with schizophrenia.</p> <p>Results</p> <p>Among the 1,108 subjects with schizophrenia, age was the only variable independently associated with DMFT > 8 (OR = 7.74, 95% CI = 3.86-15.55, p < 0.001 in comparison to residents aged 65 + years vs. 20-44 years; OR = 3.06, 95% CI = 2.03-4.61, p < 0.001 in comparison to residents aged 55-64 years vs. 20-44 years) after making adjustments for other explanatory variables. In addition, those with an education of only elementary school (OR = 1.67, 95% CI = 1.08-2.56, p = 0.021), low income (OR = 1.58, 95% CI = 1.02-2.44, p = 0.039), and length of stay (LOS) of > 10 years (OR = 2.09, 95% CI = 1.30-3.37, p = 0.002) were associated with a care index < 54.7%. Older age, lower educational level, and longer hospital stays were associated with number of remaining teeth being < 24.</p> <p>Conclusions</p> <p>Aging was the most important factor related to a high level of dental caries. Low educational level, low income, and LOS were also associated with the indicators of dental caries among institutionalized subjects with schizophrenia. It is necessary to address the treatment factors such as prolonged stay in institutions when decision-makers are planning for preventive strategies of oral health for institutionalized residents with schizophrenia.</p

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation
    corecore