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Abstract Whereas VHL inactivation is a primary event in clear cell renal cell carcinoma (ccRCC),

the precise mechanism(s) of how this interacts with the secondary mutations in tumor suppressor

genes, including PBRM1, KDM5C/JARID1C, SETD2, and/or BAP1, remains unclear. Gene

expression analyses reveal that VHL, PBRM1, or KDM5C share a common regulation of interferon

response expression signature. Loss of HIF2a, PBRM1, or KDM5C in VHL-/-cells reduces the

expression of interferon stimulated gene factor 3 (ISGF3), a transcription factor that regulates the

interferon signature. Moreover, loss of SETD2 or BAP1 also reduces the ISGF3 level. Finally, ISGF3

is strongly tumor-suppressive in a xenograft model as its loss significantly enhances tumor growth.

Conversely, reactivation of ISGF3 retards tumor growth by PBRM1-deficient ccRCC cells. Thus after

VHL inactivation, HIF induces ISGF3, which is reversed by the loss of secondary tumor suppressors,

suggesting that this is a key negative feedback loop in ccRCC.

DOI: https://doi.org/10.7554/eLife.37925.001

Introduction
Kidney cancer is among the top ten cancers, both in incidence and mortality in both men and

women. Inactivation of the VHL tumor suppressor gene is a causal event in the pathogenesis of clear

cell Renal Cell Carcinoma (ccRCC), the most frequent subtype of kidney cancer. Approximately 70 –

80% of ccRCC are sporadic tumors that harbor biallelic inactivation of VHL (Linehan et al., 2004). In

the rare disease of hereditary kidney cancer, germline VHL mutation leads to early-onset bilateral

kidney tumors. Biochemically, the protein product of the VHL tumor suppressor gene pVHL acts as

the substrate recognition module of an E3 ubiquitin ligase complex. This complex targets the a
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subunits of the heterodimeric transcription factor Hypoxia-Inducible Factor (HIF) for poly-ubiquityla-

tion and proteasomal degradation (Zhang and Yang, 2012). When HIFa is hydroxylated on either of

two prolyl residues by members of the EglN family (also called PHDs or HPHs) under normal oxygen

tension, it is recognized by pVHL. Without pVHL, HIFa protein accumulates and activates the hyp-

oxia response transcriptional program. This constitutively active HIF subsequently drives ccRCC

tumorigenesis and tumor growth (Kaelin, 2005). Interestingly, HIF targets include both tumor-pro-

moting and tumor-suppressive genes, but its overall activity is potently oncogenic (Zhang et al.,

2013).

Restoration of pVHL in VHL-/- ccRCC cells suppresses their ability to form tumors in immune-com-

promised mice, while stabilization of HIF2a overrides the effect of pVHL (Kondo et al., 2002). Con-

versely, HIF2a suppression in VHL-/- ccRCC cells cripples their ability to form tumors (Zimmer et al.,

2004). The current standard of care for metastatic ccRCC focuses on inhibiting the VEGF receptor,

yet drug resistance eventually develops in most cases. Thus it is urgent to identify new drug targets

that operate in a high percentage of RCC tumors, with the expectation that the dual actions on

VEGFR and a new target might prevent drug resistance.

Most types of solid tumors harbor multiple, sometimes dozens of mutations, in cancer genes to

establish the hallmarks of cancer (Hanahan and Weinberg, 2011; Vogelstein et al., 2013). In addi-

tion to VHL, several frequently mutated genes were identified in sporadic ccRCC. Varela et al.

reported that 41% of ccRCC tumors had inactivating mutations in the PBRM1 gene. PBRM1 is a

specificity subunit of the SWI/SNF chromatin-remodeling complex (Varela et al., 2011). The high

mutation rate of PBRM1 in ccRCC has been confirmed by multiple studies, together with mutations

in other genes such as BAP1, SETD2, KDM5C/JARID1C, PTEN and UTX (Dalgliesh et al., 2010;

Guo et al., 2012; Peña-Llopis et al., 2012; Cancer Genome Atlas Research Network, 2013;

Sato et al., 2013). However, the mutation rates of the other genes are much lower than that of

PBRM1 (Liao et al., 2015).

Multiple lines of evidence suggest that PBRM1 is a key tumor suppressor. Its mutations are pre-

dominantly inactivating in both alleles. PBRM1 suppression causes changes in pathways regulating

chromosome instability and cell proliferation (Varela et al., 2011). Like VHL mutations, many PBRM1

mutations occur early in tumorigenesis, unlike the other secondary mutations (Gerlinger et al.,

2012). Recently a PBRM1 germline mutation was reported to predispose patients to ccRCC

(Benusiglio et al., 2015). PBRM1 was also found to amplify a HIF signature (Gao et al., 2017) and

genetic ablation of both Vhl and Pbrm1 in mouse kidneys leads to ccRCC while single loss fails to do

so (Nargund et al., 2017; Gu et al., 2017).

KDM5C/JARID1C is a histone demethylase that removes methyl groups from tri-methylated lysine

four on histone H3 (H3K4me3). H3K4me3 is a histone mark that is tightly linked to actively tran-

scribed genes (Barski et al., 2007). KDM5C mutations occur in 3–7% of ccRCC tumors

(Varela et al., 2011; Dalgliesh et al., 2010; Cancer Genome Atlas Research Network, 2013;

Sato et al., 2013). Its mutations are mostly subclonal and happen later during tumor development

(Gerlinger et al., 2012; Gerlinger et al., 2014). HIF increases KDM5C levels and activity, and the

overall level of H3K4me3 is elevated when KDM5C is suppressed in VHL-defective kidney cancer

cells (Niu et al., 2012). In addition, evidence suggests that HIF-induced KDM5C is tumor-suppres-

sive, and this constitutes a negative feedback loop in regard to tumor growth (Niu et al., 2012).

SETD2 is a histone-modifying enzyme that tri-methylates histone H3 at Lysine 36 (H3K36me3). It

is mutated in 10 – 15% of ccRCC tumors (Dalgliesh et al., 2010; Cancer Genome Atlas Research

Network, 2013; Sato et al., 2013; Hakimi et al., 2013). It is also located on chromosome 3 p like

VHL and PBRM1. SETD2 mutations are subclonalin ccRCC tumors (Gerlinger et al., 2012;

Gerlinger et al., 2014; Sankin et al., 2014), and are associated with worse patient survival

(Hakimi et al., 2013). SETD2 deficiency was reported to be associated with alternative splicing and

transcriptional repression (Wagner and Carpenter, 2012). Indeed, SETD2 mutations in ccRCC

tumors are associated with changes in chromatin accessibility and DNA methylation (Buck et al.,

2014) or widespread RNA processing defects (Simon et al., 2014). Recently, SETD2 was shown to

regulate interferon signaling by methylating STAT1 (Chen et al., 2017), and to maintain mitosis and

cytokinesis through methylating a-tubulin (Park et al., 2016). The relevance of these SETD2 func-

tions to tumor suppression in ccRCC remains to be elucidated.

Like KDM5C and SETD2, BAP1 is also a histone modifying enzyme. BAP1 is inactivated in 10 –

15% of ccRCC (Guo et al., 2012; Peña-Llopis et al., 2012). The BAP1 gene is located on
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chromosome 3 at band 3p21, which is very close to the PBRM1 gene. As with VHL, PBRM1 and

SETD2, biallelic inactivation of BAP1 via mutation and loss of heterozygosity fit a two-hit tumor sup-

pressor profile. Germline mutations of BAP1 predispose patients to ccRCC, uveal melanomas, meso-

thelioma, lung adenocarcinoma, meningioma, breast carcinoma and paraganglioma (Abdel-

Rahman et al., 2011; Wadt et al., 2012; Cheung et al., 2013; Pilarski et al., 2014). Loss of BAP1 is

associated with worse patient survival in ccRCC and seems to be mutually exclusive withPBRM1

mutations (Joseph et al., 2014; Joseph et al., 2016). BAP1 protein was reported to form a complex

with host cell factor-1 (HCF-1) and promotes DNA double-strand break repair (Yu et al., 2010;

Yu et al., 2014). It also forms a complex with ASXL1 which is essential for its ability to deubiquitinate

histone H2A on lysine 119, and this function regulates cell proliferation (Daou et al., 2015). Recently

it was shown to regulate IP3R3-mediated Ca2+ to mitochondria to suppress cell transformation

(Bononi et al., 2017). How these functions contribute to its tumor suppressor role in ccRCC is

unclear.

These secondary tumor suppressors each have their own distinct biological functions and are

associated with different prognoses for the patients, and yet they all regulate chromatin biology.

Thus, we investigated whether they share a common tumor suppressor pathway in this study.

Results

Interferon (IFN)-responsive genes are upregulated by PBRM1
To determine how the suppression of PBRM1 changes the transcriptome of ccRCC cells, we used

shRNA to stably knock down the expression of PBRM1 in VHL+/+ and VHL-/- 786-O cells. Then, we

used Illumina HumanHT-12_V4 microarrays to compare gene expression between cells expressing a

control shRNA (SCR) and PBRM1 shRNA-94. PBRM1 loss in VHL-/- cells elicited a higher number of

transcriptional changes than in VHL+/+ cells (Figure 1A). In addition, in VHL-/- cells, the transcrip-

tional responses to PBRM1 depletion or VHL re-expression shared a group of gene targets

(Figure 1B). This is consistent with the previous observation that PBRM1 loss amplifies a HIF signa-

ture (Gao et al., 2017; Nargund et al., 2017). Gene Ontology (GO) pathway analysis of the shared

genes revealed that type I IFN signaling pathway and response to virus are commonly

affected (Figure 1C). Gene Sets Enrichment Analysis (GSEA) confirmed that the expression signature

of interferon alpha response was negatively correlated with PBRM1 suppression (Figure 1D). Gene

expression analysis revealed the reduced expression of IFN-responsive genes after PBRM1 loss

(Figure 1E).

IFN-responsive genes are also maintained by KDM5C
KDM5C is a histone-modifying enzyme that is frequently mutated in ccRCC. In order to learn how

the loss of KDM5C impacts the transcriptome of ccRCC cells, we stably knocked down the expres-

sion of KDM5C in VHL+/+ and VHL-/- 786-O cells. Then we compared gene expression between

cells expressing a control shRNA (SCR) and KDM5C shRNA-60 with the methods described above.

Similar to PBRM1 suppression, KDM5C loss in VHL-/- cells elicited greater transcriptional changes

than that in VHL+/+ cells (Figure 2A). We also observed that in VHL-/- cells,

transcriptional responses to KDM5C depletion or VHL re-expression shared a group of gene targets

(Figure 2B). This is consistent with the previous observation that HIF activates KDM5C and this con-

stitutes a negative feedback loop (Niu et al., 2012). GO pathway analysis, GSEA, and gene expres-

sion data confirmed that the type I IFN signaling pathway, the expression signature of interferon

alpha response, and the IFN-responsive genes were impacted by KDM5C loss (Figure 2C–E).

Suppression of KDM5C and PBRM1 have similar impacts on gene
expression
Since the suppression of either PBRM1 or KDM5C in VHL-/- 786-O cells significantly impacted the

type I IFN signaling pathway (Figures 1B and 2B), and the gene lists largely overlapped (Figures 1E

and 2E), we compared the transcriptional responses to the loss of PBRM1 or KDM5C. The vast

majority of the upregulated genes and downregulated genes after suppression of PBRM1 or

KDM5C were shared (Figure 3A). The GO pathway analysis of the shared genes that are suppressed

by PBRM1 or KDM5C did not reveal any significantly impacted pathway, but the shared induced
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genes showed that “response to virus” was significantly enriched (Figure 3B). The heat map shows

the commonly affected genes (Figure 3C). To confirm that the transcriptional response was not the

result of the off-target effects of a single shRNA, we suppressed the expression of PBRM1 or

KDM5C with two shRNA constructs each. Then we measured the expression of selected IFN-respon-

sive genes with RT-PCR, and found that the transcriptional changes in IL6, ISG20, IL8, ARPC4, GAS6,

and STMN3 were consistent (Figure 3D). To ensure that our observation is not confined to just one

cell line, we performed similar experiments in Ren-02 cells, another VHL-/- ccRCC cell line. Again,

the suppression of PBRM1 or KDM5C with different shRNA constructs produced consistent

transcriptional changes (Figure 3E), suggesting that PBRM1 loss or KDM5C loss elicits

similar transcriptional responses.

PBRM1 interacts with KDM5C
Since loss of PBRM1 or KDM5C elicited very similar transcriptional responses, we examined whether

these two proteins exist in one complex. When both proteins are expressed in HEK293T cells, immu-

noprecipitation of either protein pulled down the other (Figure 4A). In addition, over-expressed

Figure 1. IFN-responsive genes were downregulated by VHL and upregulated by PBRM1. (A) Venn diagram showing that PBRM1 loss had greater

impact on transcriptome in VHL-/- cells than that in VHL+/+ cells; (B) Venn diagram showing the overlap of genes downregulated by VHL and

upregulated by PBRM1 in 786-O cells. P-values were calculated with hypogeometric probability. (C) Enriched gene ontology (GO) analysis of genes

regulated both by VHL and PBRM1. (D) GSEA analysis of genes upregulated by PBRM1. (E) Heatmap showing the expression of IFN-responsive genes

after PBRM1 knockdown.

DOI: https://doi.org/10.7554/eLife.37925.002
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Flag-PBRM1 was able to immunoprecipitate endogenous KDM5C protein and other PBAF subunits

(Figure 4B). Flag-KDM5C was able to pull down endogenous PBRM1 along with BRG1 and BAF170,

the catalytic and structural subunits of PBAF complex respectively (Figure 4C). Interestingly, it did

not significantly co-IP BRD7 or BAF57, unlike that of Flag-PBRM1 (Figure 4B), suggesting that Flag-

KDM5C pulled down a partial PBAF complex. Moreover, the endogenous PBRM1 also pulled down

the endogenous KDM5C in human embryonic kidney (HEK) 293T cells along with the other PBAF

subunits (Figure 4D), suggesting that their interaction is not an artifact due to over-expression.

PBRM1 truncation analysis suggested that its C-terminus, possibly the HMG domain, is important for

KDM5C interaction (Figure 4E). These results suggest that two proteins exist in one protein com-

plex, and this could be the mechanism that they regulate the expression of similar target genes.

VHL, PBRM1 and KDM5C share the regulation of ISGF3
Since loss of both PBRM1 and KDM5C triggered greater transcriptional responses in VHL-/- cells

than that in VHL+/+ cells, and HIF transcriptionally interacts with PBRM1 and KDM5C (Gao et al.,

2017; Niu et al., 2012), we wondered whether VHL-regulated genes overlapped with PBRM1 and

KDM5C-regulated genes. Comparison of the transcriptional changes revealed that a group of 27

Figure 2. IFN-responsive genes were downregulated by VHL and upregulated by KDM5C. (A) Venn diagram showing that KDM5C loss had greater

impact on transcriptome in VHL-/- cells than that in VHL+/+ cells; (B) Venn diagram showing the overlap of genes downregulated by VHL and

upregulated by KDM5C in 786-O cells. P-values were calculated with hypogeometric probability. (C) Enriched gene ontology (GO) analysis of genes

regulated both by VHL and KDM5C. (D) GSEA analysis of genes upregulated by KDM5C. (E) Heatmap showing the expression of IFN-responsive genes

after KDM5C knockdown.

DOI: https://doi.org/10.7554/eLife.37925.003
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genes was suppressed by VHL but induced by PBRM1 or KDM5C (Figure 5A), and these genes were

the interferon-responsive genes (Figure 5B). A GO pathway analysis showed that these shared

genes belong to the type I interferon signaling pathway (Figure 5C).

Close inspection of these genes suggested that they are the transcriptional targets of interferon

stimulated gene factor 3 (ISGF3). ISGF3 is a heterotrimeric transcription factor composed of STAT1,

Figure 3. Suppression of KDM5C or PBRM1 had similar impact on gene expression in ccRCC cells. (A) Venn diagrams showing the overlaps of genes

whose expression are affected by PBRM1 or KDM5C losses in 786-O. The p-value significance of the overlap in a Venn diagram was calculated using

hypergeometric test in R; (B) Enriched gene ontology (GO) analysis of genes regulated both by PBRM1 and KDM5C; (C) Heat map of shared gene

targets by PBRM1 and KDM5C; (D-E) Examination of mRNA expression of individual genes by RT-qPCR in 786-O (D) and Ren-02 (E) after PBRM1 or

KDM5C was suppressed by shRNA. The p-value significance in the bar graph was calculated with two-tailed student t test. *p<0.05; **p<0.01;

***p<0.001. analysis of the shared genes that are suppressed by PBRM1 or KDM5C did not reveal any significantly impacted pathway, but the shared

induced genes showed that ‘response to virus’ was significantly enriched (Figure 3B). The heat map shows the commonly affected genes (Figure 3C).

To confirm that the transcriptional response was not the result of the off-target effects of a single shRNA, we suppressed the expression of PBRM1 or

KDM5C with two shRNA constructs each. Then, we measured the expression of selected IFN-responsive genes with RT-PCR, and found that the

transcriptional changes in IL6, ISG20, IL8, ARPC4, GAS6, and STMN3 were consistent (Figure 3D). To ensure that our observation is not confined to just

one cell line, we performed similar experiments in Ren-02 cells, another VHL-/- ccRCC cell line. Again, the suppression of PBRM1 or KDM5C with

different shRNA constructs produced consistent transcriptional changes (Figure 3E), suggesting that PBRM1 loss or KDM5C loss elicits similar

transcriptional responses.

DOI: https://doi.org/10.7554/eLife.37925.004
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STAT2, and IRF9, and it can be activated either by interferon-induced posttranslational modifications

or increased protein levels (Cheon et al., 2013). Since these genes are suppressed by VHL, compo-

nents of ISGF3 might be HIF targets. To test this, we suppressed HIF2a expression with two shRNA

constructs in 786-O cells, then examined the expression of the ISGF3 components. After HIF2a sup-

pression, the protein levels of IRF9 and STAT2 were reduced while the STAT1 protein level did not

change (Figure 5D). Conversely, transient expression of a stable and active form of HIF2a in VHL+/

+ccRCC cell lines, Caki-1 and Ren-01, slightly increased the expression levels of ISGF3 and its targets

Figure 4. PBRM1 interacts with KDM5C. (A) The indicated plasmids were transfected into HEK293T cells. Immunoprecipitations were performed

followed by immunoblots with the indicated antibodies. Flag-PBRM1 (B) or Flag-KDM5C (C) was transfected into HEK293T cells. Immunoprecipitations

were performed followed by immunoblots with the indicated antibodies. (D) HEK293T cell lysate was immunoprecipitated with indicated antibodies

followed by immunoblots with the indicated antibodies. (E) A schematic diagram of PBRM1 constructs used for KDM5C interaction analysis (top). The

indicated plasmids were transfected into HEK293T cells. Immunoprecipitations were performed followed by immunoblots with the indicated antibodies

(bottom).

DOI: https://doi.org/10.7554/eLife.37925.005
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Figure 5. HIF, PBRM1 and KDM5C are required for the expression and activity of ISGF3. A Venn diagram showing the overlaps of genes whose

expression was affected by VHL, PBRM1 or KDM5C losses in 786-O cells. The p-value significance of the overlap in a venn diagram was calculated using

hypergeometric test in R; (B) Heat map of shared gene targets by VHL, PBRM1 and KDM5C; (C) Enriched gene ontology (GO) analysis of genes

regulated both by VHL, PBRM1 and KDM5C; (D) Western blots with the indicated antibodies in 786-O cell SDS-solubilized whole cell lysates with HIF2a,

Figure 5 continued on next page
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(Figure 5—figure supplement 1). Suppression of HIF1a did not reduce ISGF3 protein level or func-

tion in RCC4 cells (Figure 5—figure supplement 2). To test whether PBRM1 and KDM5C also had

similar effects on ISGF3, we examined its components in 786-O cells with PBRM1 and KDM5C

knocked down with various shRNA constructs. In PBRM1 knockdown cells, the protein levels of IRF9

and STAT2 were lower compared to control (Figure 5D). In KDM5C knockdown cells, the protein

level of STAT2 was lower (Figure 5D). Consistent with this, the expression of ISGF3 target genes

were significantly reduced in 786-O cells after PBRM1 or KDM5C suppression (Figure 5E).

To ensure that this observation is not confined to just one ccRCC cell line, we knocked down

HIF2a, PBRM1 or KDM5C in another VHL-deficient ccRCC cell line, Ren-02. After HIF2a suppression,

all three subunits of ISGF3 showed reduced expression (Figure 5F). After PBRM1 or KDM5C sup-

pression, the protein levels of IRF9 and STAT2 dropped (Figure 5F). Consistent with this, the expres-

sion of ISGF3 target genes was significantly reduced in Ren-02 cells after PBRM1 or KDM5C

suppression (Figure 5—figure supplement 3).

ISGF3 can be activated by either interferon-induced phosphorylation on STAT1 and STAT2 or

increased unphosphorylated protein levels (Cheon et al., 2013; Borden et al., 2007). To determine

the phosphorylation status of ISGF3, we used interferon a to stimulate 786-O cells with or without

PBRM1 (Figure 5—figure supplement 4A) or KDM5C (Figure 5—figure supplement 4B) knocked

down and found that the ISGF3 was mostly unphosphorylated. This suggests that the elevated pro-

tein levels of ISGF3 components are responsible for the enhanced activity of ISGF3.

SETD2 and BAP1 also regulate the expression and function of ISGF3
A recent report suggested that SETD2 promotes ISGF3 activity through methylating STAT1 after

interferon stimulation (Chen et al., 2017). This prompted us to examine whether the remaining

major tumor suppressors in ccRCC, SETD2 and BAP1, also regulate ISGF3 in VHL-/-ccRCC cells. We

knocked down the expression of SETD2 and BAP1 with shRNA constructs in Ren-02 cells and

observed significant down-regulation of IRF9 and STAT2 (Figure 6A, and Figure 6—figure supple-

ment 1). In addition, we observed reduced expression of PLSCR1 and MX1, two ISGF3 targets.

BAP1 re-expression in a Ren-02 BAP1 knockdown (Figure 6B, left) or knockout clone (Figure 6B,

right) generated by CRISPR/Cas9 increased the protein levels of STAT2, IRF9 and PLSCR1, suggest-

ing that BAP1’s impact on ISGF3 is specific. To ensure that this effect is not confined to one cell line,

we knocked down the expression of BAP1 or SETD2 in RCC4 and BAP1 in A498 cells (A498 has an

inactivating mutation in SETD2 so it is not suitable for SETD2 analysis), two additional VHL-deficient

ccRCC cell lines. Their suppression also led to the reduced expression of IRF9, STAT2, PLSCR1 and

MX1 (Figure 6C and D). Again, the impact of BAP1 loss in A498 cells was reversed by BAP1 re-

expression (Figure 6E). In order to further examine the impact of BAP1 on ISGF3 expression and

activity, we expressed GFP, wild type BAP1, or BAP1 with tumor-derived mutations (N78S or

G185R) in BAP1 null ccRCC cell lines UMRC2 and UMRC6. Expression of wild type or N78S BAP1

clearly increased ISGF3 protein levels and its activity in these cells, while the G185R mutant failed to

do so (Figure 6F and G). Thus SETD2 and BAP1 also are required to maintain the expression and

function of ISGF3 in multiple VHL-deficient ccRCC cell lines. As a ccRCC tumor-derived mutation in

Figure 5 continued

PBRM1 or KDM5C suppressed by shRNA; (E) Examination of mRNA expression of individual genes by RT-qPCR in 786-O cells after PBRM1 or KDM5C

suppression by shRNA; (F) Western blots with the indicated antibodies in Ren-02 cell SDS-solubilized whole cell lysates with HIF2a, PBRM1 or KDM5C

suppressed by shRNA. The p-value significance in the bar graph was calculated with two-tailed student t test. *p<0.05; **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.37925.006

The following figure supplements are available for figure 5:

Figure supplement 1. Over-expression of HIF2a in VHL+/+ccRCC cells increases ISGF3 levels and activity.

DOI: https://doi.org/10.7554/eLife.37925.007

Figure supplement 2. Suppression of HIF1a does not reduce ISGF3 protein level or function in RCC4 cells.

DOI: https://doi.org/10.7554/eLife.37925.008

Figure supplement 3. The reduced expression of ISGF3 targets in Ren-02 cells after suppression of PBRM1 or KDM5C.

DOI: https://doi.org/10.7554/eLife.37925.009

Figure supplement 4. The ISGF3 is mostly unphosphorylated in 786-O ccRCC cells.

DOI: https://doi.org/10.7554/eLife.37925.010
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Figure 6. BAP1 and SETD2 are required for the expression and activity of ISGF3. SDS-solubilized whole cell lysates of Ren-02 cells expressing control

shRNA or shRNA against BAP1 or SETD2 were blotted with the indicated antibodies.(B) Control vector expressing GFP or BAP1 were stably transfected

into Ren-02 cells expressing BAP1-sh74 (left). The BAP1 plasmid carries silent mutations against BAP1-sh74 to cancel the effect of shRNA. Control

vector expressing GFP or BAP1 were transiently transfected into a Ren-02 clone with BAP1 knocked out by CRISPR/Cas9 (right). The SDS-solubilized

whole cell lysates were blotted with the indicated antibodies. C-D) SDS-solubilized whole cell lysates of RCC4 cells (C) or A498 cells (D) expressing the

indicated shRNA constructs were blotted with the indicated antibodies. The knockdown efficiency of SETD2 was measured with RT-PCR in panels A and

C. (E). Control vector expressing GFP or BAP1 with silent mutations were stably transfected into A498 cells expressing BAP1-sh74. BAP1-null UMRC2 (F)

Figure 6 continued on next page
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BAP1 disrupted this function in both BAP1-null cells, it suggests that the regulation of ISGF3 is

important to BAP1’s tumor suppressor function.

ISGF3 is tumor suppressive in a xenograft model
ISGF3 is known to be involved in the DNA damage response, response to immunotherapies and,

canonically, the response to viral infection (Borden et al., 2007). There is no report showing its

direct involvement in regulating tumorigenesis or tumor growth. Since ISGF3 is activated by HIF and

suppressed after the loss of PBRM1, KDM5C, SETD2 or BAP1, it may function as the executioner of

a negative feedback loop that potently opposes tumor growth. To test this, we first confirmed that

IRF9-sh69 shRNA construct successfully downregulated IRF9 expression (Figure 7A). Suppression of

IRF9 did not significantly change cell growth in culture (Figure 7B). We injected the same number of

786-O cells expressing control shRNA (SCR) or IRF-sh69 into the flanks of nude mice. The 786-O cells

with IRF9 suppression produced much larger tumors than the control cells (Figure 7C and

D). Knockdown of IRF9 in Ren-02 cells also significantly boosted tumor growth in a xenograft model

(Figure 7—figure supplement 1), IRF9 suppression did not reduce the expression of other subunits

of ISGF3 (Figure 7—figure supplement 2A), and IRF9 suppression was maintained in the endpoint

tumors (Figure 7—figure supplement 2B). Furthermore, we stably suppressed the expression of

either STAT1 or STAT2 in 786-O cells then performed xenograft analysis. In both cases, the tumors

were significantly bigger than the ones made by the control cells (Figure 7—figure supplement 3).

These data strongly suggest that ISGF3 has potent anti-tumor activity in vivo.

In order to learn the reason for enhanced tumor growth after IRF9 knockdown, we performed

hematoxylin and eosin(H&E) and immunohistochemistry (IHC) staining on five pairs of 786-O SCR

and IRF9-69 tumors. The control tumors contained higher percentages of mouse stromal cells, while

the IRF9 knockdown tumors were mostly comprised of cancer cells (Figure 7E and Figure 7—figure

supplement 4). The cancer cells in tumors with IRF9 knockdown had a slight but insignificant

increase in Ki67 staining, a marker for cell proliferation, over cancer cells in control tumors

(Figure 7E). However, CD45 staining, a marker for all mouse immune cells, was significantly higher

in control tumors compared to IRF9 knockdown tumors (Figure 7E, p=0.007). There were no signifi-

cant differences in cleaved caspase three or CD31, markers for apoptosis or blood vessels, respec-

tively (Figure 7—figure supplement 4). Thus the lack of infiltrating host immune cells into the

tumors formed by ccRCC cells depleted of IRF9, not changes in cell proliferation, apoptosis, or

blood vessel growth, might be the primary reason of enhanced growth.

Over-expression of ISGF3 in PBRM1-deficient ccRCC cells strongly
suppresses tumor growth
Suppression of IRF9 in 786-O or Ren-02 cells greatly enhanced tumor growth (Figure 7 and Fig-

ure 7—figure supplement 1). As PBRM1 suppression led to reduced ISGF3 expression and activity

(Figure 5) and enhanced tumor growth (data not shown), we asked whether ISGF3 over-expression

reverses the enhanced tumor growth elicited by PBRM1 deficiency. To this end, we stably infected

786-O PBRM1-sh94 cells with different combinations of viral vectors expressing STAT1, STAT2 or

IRF9. The combination of STAT2 +IRF9 or all three factors strongly induced ISGF3 targets PLSCR1

and MX1 (Figure 8A) and we chose the cells expressing STAT2 +IRF9 for further analysis. The over-

expression of STAT2 +IRF9 did not change cell growth in culture (Figure 8B), however, overexpres-

sion of these ISGF3 components strongly suppressed tumor growth by PBRM1-deficient 786-O cells

in a xenograft model (Figure 8C and D).Thus depletion of ISGF3 greatly enhanced tumor growth

Figure 6 continued

or UMRC6 (G) ccRCC cells were stably transfected with indicated plasmids. The SDS-solubilized whole cell lysates were blotted with the indicated

antibodies.

DOI: https://doi.org/10.7554/eLife.37925.011

The following figure supplement is available for figure 6:

Figure supplement 1. Suppression of SETD2 expression by western blot.

DOI: https://doi.org/10.7554/eLife.37925.012
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Figure 7. Suppression of IRF9, a key component of ISGF3, led to enhanced tumor growth and significantly less

tumor-infiltrating immune cells. (A) SDS-solubilized whole cell lysates of 786-O cells expressing control shRNA or

shRNA against IRF9 were blotted with indicated antibodies; (B) The growth rate of the indicated cell lines

measured by WST-1 assay; (C) Pictures of mice and xenografted tumors and (D) Quantification of tumor weights

Figure 7 continued on next page
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while its activation very potently blocked it, suggesting that ISGF3 is a central player in ccRCC tumor

growth that is targeted by most of the cancer genes.

IRF9 and STAT2 expression significantly correlated with the expression
of PBRM1, SETD2, or BAP1 in human ccRCC tumors
To verify that the observations are relevant for human ccRCC, we analyzed TCGA ccRCC datasets to

investigate possible connection between ISGF3 and the secondary tumor suppressors. However, we

did not find consistent correlations between mRNA levels of BAP1, PBRM1, KDM5C, SETD2 and

ISGF3 components in the whole tumors (data not shown). One possibility for these results is that the

mRNA expression of ISGF3 components detected in TCGA is not primarily coming from cancer cells,

but from other stromal cells which can distort the results. To investigate this, we analyzed the corre-

lations between well-known immune and tumor cell markers (CD45 or PTPRC, CD3, CD8, etc and

CDH1, EPCAM) with ISGF3 subunits within the TCGA dataset. We found that the mRNA expression

of ISGF3 subunits in the TCGA dataset comes predominantly from immune cells as opposed to

tumor cells (surrogated by EPCAM and E cadherin) (Figure 9—figure supplement 1). We also

sought to confirm this with immunohistochemistry (IHC). We found that immune cells had much

higher protein expression of ISGF3 subunits STAT2 than the normal or cancerous human kidney cells.

On the same slide, the immune cells in lymph node, spleen and lung tissues were stained strongly

positive with antibody against STAT2, but the normal and cancerous kidney tissue stained negative

or very weakly (Figure 9—figure supplement 2A). Interestingly, in the lung tissue, the strong stain-

ing of STAT2 in the immune cells did not seem to significantly increase the staining intensity of the

surrounding cells. Similar observation was made with IRF9 IHC (Figure 9—figure supplement 2B).

Thus immune cells have much higher expression of ISGF3 subunits STAT2 and IRF9 than that in kid-

ney cancer cells, and this could disrupt the detection of ISGF3 mRNA expression in the cancer cells.

Since our hypothesis is that BAP1, PBRM1, KDM5C, SETD2 are critical to maintain the expression

and/or function of ISGF3 subunits in the ccRCC cancer cells, we concluded that mRNA levels in the

bulk tumors from the TCGA dataset are not suitable for our validation experiments.

To validate our hypothesis, we decided to examine the ISGF3 protein levels in ccRCC cancer cells

with IHC and correlate their protein levels with the protein levels of BAP1, PBRM1, and SETD2. We

have previously examined the protein levels of PBRM1 and SETD2 in a ccRCC tissue microarray

(TMA) generated by our colleagues at Fox Chase Cancer Center in our previous publication

(Jiang et al., 2016). The specificity of the BAP1 (Figure 6A), STAT2 (Figure 7—figure supplement

3) and IRF9 (Figure 9—figure supplement 3A) antibodies used for IHC was validated by western

blots. We probed the same TMA with antibodies against BAP1, IRF9 and STAT2. The staining of

BAP1 or IRF9 mostly occurs in the nucleus, while STAT2 staining is found in both cytoplasm and

nucleus (Figure 9—figure supplement 3B). In many cases the protein expression levels of PBRM1,

SETD2 or BAP1 correlated with that of STAT2 or IRF9 on the same tumor samples (Figure 9A). After

scoring the samples and performing statistical analysis, the Spearman association analysis revealed

that nuclear IRF9 and cytoplasmic STAT2 both significantly correlated with the expression of PBRM1,

Figure 7 continued

originating from same number of cancer cells described in (A) in athymic nude mice. The p-value was calculated

with two-tailed student t test; (E) H&E or immunohistochemistry stains of slides from the representative pair five

tumors. The percentages of CD45- or Ki67-positive cancer cells in the tumors were quantified with analytic

programs in Aperio software. The p-values were calculated with Mann Whitney-Wilcoxon.

DOI: https://doi.org/10.7554/eLife.37925.013

The following figure supplements are available for figure 7:

Figure supplement 1. Suppression of IRF9 significantly enhanced tumor growth by Ren-02 cells.

DOI: https://doi.org/10.7554/eLife.37925.014

Figure supplement 2. Stable suppression of IRF9 in ccRCC cells and xenograft tumors.

DOI: https://doi.org/10.7554/eLife.37925.015

Figure supplement 3. Suppression of STAT1 or STAT2 promotes tumor growth.

DOI: https://doi.org/10.7554/eLife.37925.016

Figure supplement 4. IRF9 loss does not lead to significant changes in apoptosis or blood vessel density.

DOI: https://doi.org/10.7554/eLife.37925.017
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Figure 8. Over-expression of IRF9 and STAT2 restored ISGF3 function and retarded tumor growth of 786-O cells with PBRM1 suppressed. (A) 786-O

cells were infected with the indicated viral vectors. SDS-solubilized whole cell lysates were blotted with the indicated antibodies. (B) Cellular growth of

indicated cell lines measured by WST-1 assay; (C) Pictures of mice and xenografted tumors and (D) Quantification of tumor weights originating from

the same number of cancer cells expressing either an empty vector or STAT2 plus IRF9 in athymic nude mice. The p-value was calculated with two-

tailed student t test.

DOI: https://doi.org/10.7554/eLife.37925.018
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SETD2, or BAP1 (Figure 9B). The correlations were mostly statistically significant when all foci were

considered and in individual tumor stage or grade. Interestingly, the loss of nuclear staining of IRF9

was associated with worse patient survival, consistent with a tumor suppressor role of ISGF3

(Figure 9C). The loss of cytoplasmic STAT2 staining was not associated with worse patient survival

(Figure 9D), suggesting that other ISGF3 components are the more dominant players in the human

ccRCC. Consistent with this idea, the change of IRF9 protein in the TMA (Figure 9B) and in the

Figure 9. IRF9 and STAT2 expression significantly correlated with the expression of PBRM1, SETD2, or BAP1 in ccRCC tumors. (A) 20x IHC images of

representative ccRCC foci stained with indicated antibodies. (B) Spearman correlation coefficient, rho, and p-value of nuclear (nuc) IRF9 or cytoplasmic

(cyto) IHC signals with those of PBRM1, SETD2 or BAP1. The analysis was performed with either all the foci or the foci within each tumor stage or tumor

grade. (C) Kaplan-Meier curves of patient overall survival based on the positive or negative IHC signal of nuclear IRF9 and (D) cytoplasmic STAT2.

Statistical significance calculated using the log-rank test. (E) A schematic diagram showing how HIF and secondary tumor suppressors converge on

ISGF3 to regulate tumor growth in ccRCC. HIF activates ISGF3 that suppresses tumor growth. PBRM1, KDM5C, SETD2 and BAP1 all support the

function of ISGF3. Mutations in any of them relieve the tumor suppressive function of HIF2a.

DOI: https://doi.org/10.7554/eLife.37925.019

The following figure supplements are available for figure 9:

Figure supplement 1. ISGF3 subunits correlate positively with immune cell markers and negatively with cancer cell markers in the TCGA dataset.

DOI: https://doi.org/10.7554/eLife.37925.020

Figure supplement 2. STAT2 and IRF9 protein levels are significantly higher in immune cells than that in kidney cells.

DOI: https://doi.org/10.7554/eLife.37925.021

Figure supplement 3. IHC staining of ccRCC tumors with BAP1, IRF9 or STAT2 antibodies.

DOI: https://doi.org/10.7554/eLife.37925.022
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cultured cells (Figures 5 and 6) tracked better with the changes of PBRM1, SETD2 or BAP1. Taken

together, our data suggest that the links between PBRM1, SETD2 or BAP1 and ISGF3 are preserved

in human ccRCC tumors.

Discussion
Although the overall activity of HIF is strongly oncogenic, our previous results indicate that it also

triggers a significant anti-tumor response. For instance, KDM5C is induced by HIF, and its demethy-

lase activity against global H4K4me3 mark is dependent on HIF in VHL-/-ccRCC cells, and yet it

clearly plays an anti-tumor role in ccRCC (Niu et al., 2012). In addition, some other HIF downstream

targets, such as VEGF or Cyclin D1, are strongly pro-tumor growth, whereas other HIF downstream

targets such as GLUT1 or IGFBP3, are obviously tumor suppressive (Zhang et al., 2013). Consistent

with this, Vhl conditional knockout in mouse kidneys alone is not sufficient to generate ccRCC

despite fully activated HIF. Only after combination with Pbrm1 or Bap1 conditional knockout can Vhl

loss lead to kidney tumors (Nargund et al., 2017; Gu et al., 2017). Thus HIF could activate ISGF3,

which constitutes a negative feedback loop in ccRCC. Its inhibitory effect on tumor growth can be

relieved by the loss of PBRM1, KDM5C, SETD2 or BAP1 to promote robust tumor growth

(Figure 9E).

ISGF3 is traditionally activated by interferon stimulation through phosphorylation of STAT1 and

STAT2 (Borden et al., 2007). However, days after the initial activation, the posttranslational modifi-

cations (PTMs) disappear, yet ISGF3 can still maintain its activity as unphosphorylated ISGF3 (U-

ISGF3) with greatly enhanced protein levels (Cheon et al., 2013). U-ISGF3 activates fewer targets

than phosphorylated ISGF3, but it still potently antagonizes viral infection and DNA damage. In

oncology, ISGF3 is known to be a predictive biomarker for chemotherapy and radiation in breast

cancer (Weichselbaum et al., 2008), and it is also associated with drug-resistance to immune check-

point blockade (Benci et al., 2016). Recently, immune checkpoint inhibitors, specifically those that

target Programmed Death 1 (PD-1), Programmed Death Ligand 1 (PD-L1), and Cytotoxic T-Lympho-

cyte Associated 4 (CTLA-4) have gained traction in metastatic RCC (mRCC). The FDA has granted

priority review for ipilimumab/nivolumab in intermediate and poor-risk mRCC (Abernathy, 2017),

with RCC experts declaring this combination the new standard of care in the treatment of mRCC

(Chustecka, 2017; Rini, 2017). Loss-of-function mutations in PBRM1 were discovered to confer clini-

cal benefit to ccRCC patients treated with anti-PD-1 alone or in combination with anti-CTLA-4 thera-

pies (Miao et al., 2018). In addition, PBRM1 mutations were found to enhance T-cell-mediated

killing in an unbiased, high-throughput screen in a melanoma model (Pan et al., 2018). As PBRM1

and other ccRCC tumor suppressor genes (TSGs) converge on ISGF3, it will be very interesting to

examine whether ISGF3 status is a predictive biomarker for response to immunotherapy. The fact

that PBRM1 mutations, but not those of BAP1, SETD2, and KDM5C, are a predictive biomarker for

response to immunotherapy is likely because PBRM1 and BAP1 mutations are truncal (root change)

in many cases while the mutations of the other two are subclonal (Gerlinger et al., 2012;

Gerlinger et al., 2014). BAP1 mutations might also elicit an additional change that cancels their

immunotherapy-sensitizing effect.

ccRCC is known to harbor rampant intra-tumoral heterogeneity (Gerlinger et al., 2012;

Gerlinger et al., 2014; Jiang et al., 2016; Jiang et al., 2017). Inactivating mutations in PBRM1,

SETD2, KDM5C and BAP1 tend to be focal in the tumors, so therapies that are designed to exploit

the weakness induced by mutation of an individual gene could be problematic since it cannot treat

the remaining cancer cells free of that mutation. Since the suppression of PBRM1, KDM5C, SETD2

or BAP1 all lead to the reduction of ISGF3, a potent tumor suppressor, it is possible that any effec-

tive therapeutic intervention that restores ISGF3 function could benefit ccRCC patients with a wide

variety of mutations.

Pbrm1 loss in mice and PBRM1-/- vs PBRM1 re-expressed human A704 cells showed that PBRM1

deficiency was linked to the activation of the JAK/STAT3 pathway (Nargund et al., 2017;

Miao et al., 2018). STAT3 and ISGF3 are two different, often times opposing, pathways: ISGF3 is

activated by type I IFN (Cheon et al., 2013), while STAT3 is activated by the IL6 family, oncogenes,

and growth factors (Heinrich et al., 1998). They have very different gene targets. STAT3 is often

considered an oncogene (Yuan et al., 2016), while STAT1 is usually considered a TSG

(Stephanou and Latchman, 2003), and thus they appear to play opposing biological roles in
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tumorigenesis (Avalle et al., 2012). In human T lymphoma cells or mouse cells, loss of STAT3 leads

to prolonged activation of STAT1 (Regis et al., 2008; Costa-Pereira et al., 2002; Maritano et al.,

2004). In addition, STAT3 negatively regulates the type I IFN signaling pathway by inhibiting expres-

sion of IRF7, IRF9, STAT1 in diffuse large B cell lymphoma (Lu et al., 2018). Thus STAT3 and ISGF3

are distinct and activated STAT3 might suppress ISGF3 in ccRCC cells, and this deserves further

investigation.

In a recent publication, SETD2 was shown to methylate STAT1 to promote ISGF3 function

(Chen et al., 2017). However, this requirement of SETD2 is not observed unless IFN is added to acti-

vate ISGF3. In our system, no exogenous IFN was present, and HIF activation seemed to be suffi-

cient to increase the protein levels of STAT2 and IRF9, thus it might activate U-ISGF3 (Figure 5—

figure supplement 1). In 786-O cells with or without PBRM1 or KDM5C suppression, the mRNA lev-

els of STAT1, STAT2 and IRF9 mirror that of the proteins (data not shown), suggesting that the regu-

lation of U-ISFG3 occurred at the transcriptional level. Interestingly, BAP1 loss reduced the protein

levels of STAT2 and IRF9 independent of PBRM1 status, since RCC4 cells express no endogenous

PBRM1 (Figure 6C).

Why ISGF3 is a potent tumor suppressor in ccRCC tumors is currently not well understood. One

possibility is that interferon stimulated genes (ISG) have anti-proliferative and pro-apoptotic function

in ccRCC cancer cells. ISGs activated by IFN do have such activity to curb the spread of virus in the

infected cells (Borden et al., 2007), and the U-ISGF3 was thought to be weaker in this regard with a

much smaller target pool (Cheon et al., 2013). However, the U-ISGF3 may still possess sufficient

anti-proliferative/pro-apoptotic activity to impair the fitness of the cancer cells. Our current evidence

suggests that this does not apply in our model. Alternatively, U-ISGF3 may change how the cancer

cells interact with the immune system. The nude mice used in our study do not have adaptive

immune system but the innate immune response remains intact. The heightened U-ISGF3 may

attract more innate immune cells such as macrophages and NK cells to attack the tumors and curb

tumor growth, as a previous report showed that over-expression of IFN-b recruited macrophages

which suppressed tumor growth and metastasis in nude mice (Zhang et al., 2002). However, further

studies to closely monitor the cancer and host cells are needed to provide a definitive answer to this

question. It will be important to identify the mechanism of how ISGF3 curbs tumor growth in ccRCC

with human tumor samples and immune-competent mouse models so we can exploit this pathway

to treat ccRCC patients.

With our current preliminary data we think that PBRM1 and KDM5C regulate ISGF3 subunits at

transcriptional level, while SETD2 and BAP1 regulate ISGF3 at post-translational modification level.

They might use quite different mechanisms to achieve the same goal: maintaining the ISGF3 activity,

so loss of any of them could promote tumor development. Further investigation into these mecha-

nisms is needed.

It is highly surprising that so many major TSGs in ccRCC share the same target in ISGF3.

Undoubtedly each TSG has its own unique tumor suppressing functions, as each carries different

prognoses for the patients. KDM5C mutations were reported to occur in the cells with PBRM1 muta-

tions (Hsieh et al., 2017). It is possible that their unique tumor suppressor functions are synergistic

so their mutations are selected in the same cells during tumor development. However, the fact that

they all converge on ISGF3 warrants further investigation into how this pathway impacts drug

response, patient survival, animal modeling and drug development.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Human) 786-O purchased from ATCC ATCC CRL-1932

Cell line (Human) A498 purchased from ATCC ATCC CRL-7908

Cell line (Human) Ren-01 Daniel Lindner
at Cleveland Clinic

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Human) Ren-02 Daniel Lindner
at Cleveland Clinic

Cell line (Human) RCC4 William Kaelin Jr.
at Dana-Farber
Cancer Institute

Cell line (Human) Caki-1 William Kaelin Jr.
at Dana-Farber
Cancer Institute

Cell line (Human) HEK293T William Kaelin Jr.
at Dana-Farber
Cancer Institute

Cell line (Human) UMRC2 Qing Zhang at UNC
Chapel Hill

Cell line (Human) UMRC6 Qing Zhang at UNC
Chapel Hill

Antibody BAP1 (mouse monoclonal) Santa Cruz Biotech,
sc-28383

(1:200 for western blot,
1:50 for IHC)

Antibody STAT2 (rabbit polyclonal) Bethyl A303-512A (1:1,000 for western blot,
1:25 for IHC)

Antibody IRF9 (rabbit polyclonal) Sigma, HPA001862 (1:2,000 for western blot,
1:50 for IHC)

Recombinant DNA reagent Flag-PBRM1 (human) This paper Available upon request.

Recombinant DNA reagent Flag-KDM5C (human) This paper Available upon request.

Other Ren-02 cells with BAP1 knocked out This paper BAP1 gene was knocked
out with the CrRISPR-Cas9
technique. Detailed description
was listed in the Materials
and methods.

Gene expression analysis
Genome-wide gene transcription was profiled using Illumina HumanHT-12_V4 Expression Bead

Chip. The raw gene expression data were preprocessed in Genome Studio (https://www.illumina.

com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html), and fur-

ther processed using R limma package (Ritchie et al., 2015) for force-positive background correc-

tion, log2 transformation and quantile normalization. Data quality control was performed by

selecting present probes using the detection threshold of 0.05. Outlier samples were examined

using hierarchical clustering and no samples were removed. The average value across the probesets

of an annotated gene was used as the gene-level expression and the data matrix was exported for

downstream analysis. Differential gene expression analyses were performed using limma package

controlling for batch effects in a linear model (Phipson et al., 2016). Gene set enrichment was per-

formed using a preranked GSEA algorithm (Subramanian et al., 2005) based on log2 fold change.

GO analyses were performed using the DAVID (Huang et al., 2009) online tools. For the GO analy-

ses, Venn diagrams, and heatmaps, the cutoff of adjusted p-value less than 0.05 and fold change

greater than two were applied to select genes. The statistical significance of the overlaps in the

Venn diagrams was calculated based on hypergeometric distribution function – phyper implemented

in R (https://www.r-project.org/). The gene expression values used in the heatmaps were prepro-

cessed by ComBat (Johnson et al., 2007) to remove batch effects, and then centered by the mean

values of each row. Source file: GEO accession GSE108229.

Analysis of TCGA dataset
Gene expression for the TCGA dataset, Kidney renal cell carcinoma (KIRC), were obtained through

the ‘cgdsr’ R package (Jacobsen and cBioPortal Questions, 2018). RSEM expression data were

transformed into log2(RSEM +1). Transformed data were used for Pearson correlation and plotted

with the ‘ggplot2’ R package (Wickham, 2016). Scripts available upon request.
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Analysis of TMA
Association between different IHC targets were determined using Spearman correlation. Kaplan-

Meier survival analyses were performed and plotted using ‘survival’ and ‘survminer’ R packages

(Kassambara et al., 2018; Therneau and Lumley, 2015; Therneau and Patricia, 2000). Statistical

significance of survival curves was calculated using the log-rank test.

Mutagenesis, subcloning and primers for RT-PCR
Mutagenesis was performed via the QuikChange method using phusion DNA polymerase (Thermo-

Fisher). Primers were designed using Agilent’s QuikChange Primer Design program. The sequences

are as follows: BAP1-N78S-F: CTGGTGGGCAAAGAACATGTTACTCACAATATCATCATCAATCAC,

BAP1-N78S-R: GTGATTGATGATGATATTGTGAGTAACATGTTCTTTGCCCACCAG, BAP1-G185R-F:

GACCTTCAGCCTATCCAGCTCAAAGAGCCG, BAP1-G185R-R: CGGCTCTTTGAGCTGGATAGGC

TGAAGGTC. A temperature gradient was performed to ensure primer annealing during PCR cycling.

Following DpnI digestion, DNA was transformed into XL10 Gold Ultracompetent Cells (Agilent).

Plasmids were sequenced to confirm the point mutations.

Full-length PBRM1 was subcloned into p3xFlag-CMV10 with primers PBRM1-F: CCCAAGCTTA

TGGGTTCCAAGAGAAGAAG and PBRM1-R: GGAATTCTTAAACATTTTCTAGGTTGT. For 1–1297

and 1–1184 PBRM1 constructs, the following primers were used to introduce nonsense mutants

through mutagenesis:

1297 (3892C-T): 3892 F: CCAATTGTTCCTTAGAAGGAGCCAT; 3892 R: ATGGCTCCTTCTAAG-

GAACAATTGG

1184 (3553C-T): 3553 F: AAAGTATGGGTTTGAGATGGAGCTG; 3553 R: CAGCTCCATC

TCAAACCCATACTTT

Primers for real-time PCR

Primer name Primer sequence

GAPDH-F TGCACCACCAACTGCTTAGC

GAPDH-R GGCATGGACTGTGGTCATGAG

OAS1-F CATCTGTGGGTTCCTGAAGG

OAS1-R GAGAGGACTGAGGAAGACAAC

OAS2-F CAGTCCTGGTGAGTTTGCAGT

OAS2-R ACAGCGAGGGTAAATCCTTGA

IFI44-L TTCGATGCGAAGATTCACTG

IFI44-R CCCTTGGAAAACAGACCTCA

IFI44L-F GAGCACAGAAATAGGCTTCTAGC

IFI44L-R TGGTATCAGACCCCACTACGG

IFIT1-F CTGAATGCAGCTCACCTCTG

IFIT1-R GGATGGAATTGCCTGCTAGA

ISG20-F GTCACCCCTCAGCACATG

ISG20-R AGATTGTGTAGCCGCTCATG

GAS6-F AGACTATCACTCCACGAAG

GAS6-R TCGCAGACCTTGATCTCC

STMN3-F CAGCACCATTTCCGCCTA

STMN3-R CCTCCATGTCCCCGTA

ARPC4-F TCAGTCAATGCCCGTG

ARPC4-R CTCCAGGACGCCTTCG

IL6-F CCAGCTATGAACTCCTTCTC

IL6-R GCTTGTTCCTCACATCTCTC

Continued on next page
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Continued

Primer name Primer sequence

IL8-F ATCGCTTCCTCTCGCAACAA

IL8-R CTTCTACTGGTTCAGCAGCCATCT

CCL5-F TCTGCGCTCCTGCATCTG

CCL5-R GGGCAATGTAGGCAAAGCA

SETD2-F: ATCGAGAGAGGACGCGCTATT

SETD2-R: AGGTACGCCTTGAGTATGTCTT

Cell culture and viral infection
Kidney cancer cell lines 786-O and A498 were purchased from ATCC. Ren-02, RCC4 and HEK293T

were described previously (Niu et al., 2012; Negrotto et al., 2011). UMRC2 and UMRC6 cells were

a gift from Dr. Qing Zhang from University of North Carolina at Chapel Hill. All cell lines were main-

tained in 37˚C incubator with 5% CO2 in glutamine-containing DMEM medium supplemented with

10% fetal bovine serum (FBS) and 1% penicillin and streptomycin. Mycoplasma contamination is

tested with a PCR-based kit. The cells will be treated with antibiotics to eradicate the mycoplasma if

it is detected. The cell proliferation rate was measured with a WST-1 kit from Sigma Aldrich accord-

ing to the manufacturer’s instruction.

The packaging of shRNA viral particles, the infection and selection, and the expression of shRNA

resistant plasmid were the same as described before (Kondo et al., 2002).

The generation of Ren-02 BAP1 knockout (KO) clone
Ren-02 BAP1 knockout (KO) cells were generated using an inducible CRISPR-Cas9 system previously

described (Cao et al., 2016). Briefly, HEK293T cells were transfected with 2 mg pLenti-iCas9-Neo,

2mgDR8.9 packaging vector, and 200 ng VSV-G envelope vector using lipofectamine 2000. Lentiviral

supernatants were filtered and used to infect Ren-02 cells with polybrene, and infected cells were

selected with 1.0 mg/ml G418. The cells were then treated with 1.0 mg/ml doxycycline to induce

Cas9 expression, and sorted by GFP expression using flow cytometry. Short guide RNA (sgRNA)

sequences were designed to target BAP1 exon five using Optimized Crispr Design (crispr.mit.edu),

using the following oligonucleotides: BAP1-exon5-F: CACCGACCCACCCTGAGTCGCATGA; BAP1-

exon5-R: AAACTCATGCGACTCAGGGTGGGTC. The sgRNAs were cloned into pLentiGuide-Puro

as previously described (Sanjana et al., 2014; Shalem et al., 2014). The pLentiGuide-Puro-sgRNA

plasmids were transfected into HEK293T cells to generate lentivirus, which was used to infect Ren-

02 iCas9 cells. Following selection with 2.0 mg/ml puromycin, the Ren-02 iCas9-sgRNA cells were

treated with doxycycline, diluted, and screened to identify individual clones with BAP1 KO.

Western blot and immunoprecipitation
Cells were washed in PBS buffer, then lysed with EBC buffer (50 mM Tris, pH 8.0; 120 mM NaCl;

0.5% NP-40) supplemented with a protease inhibitor cocktail. In some cases 1% SDS solution was

added to the cells in the plates instead of EBC buffer, then the solution was sonicated at 20 A for 3

� 15 s pulses and mixed with sample buffer. The same total amount of total protein was loaded and

resolved by SDS–PAGE and analyzed by immunoblotting. The blots were developed with Super Sig-

nal Pico substrate (Pierce Biotechnology, Rockford, IL) or Immobilon Western substrate (Millipore,

Billerica, MA). Immunoprecipitations were performed with EBC lysates as previously described

(Niu et al., 2012).

The antibodies used in this manuscript are: HA (Covance MMS-101P-1000 HA.11 (16B12 for IB,

Santa Cruz Biotech sc-805 for IP), Flag (Sigma F3165-1mg (M2)), KDM5C (Bethyl A301-034A and

A301-035A), BAP1 (Santa Cruz Biotech sc-28383), g-Actin (Santa Cruz Biotech sc-8432), PBRM1

(Bethyl A301-591A and A301-590A), STAT1 (Cell signaling 9172S), phospho-STAT1 (Cell signaling

9171L), STAT2 (Bethyl A303-512A-T), phospho-STAT2 (Cell signaling 88410), IRF9 (Cell signaling

76684S), MX1 (R and D AF7946), PLSCR1 (Santa Cruz Biotech sc-59645), Vinculin (Santa Cruz Biotech

sc-73614), GAPDH (Santa Cruz Biotech sc-59540), HIF2a (Novus NB100-122), OAS1 (Cell signaling

14498S).
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Short hairpin RNAs (shRNAs)
All the shRNA constructs except for SCR were obtained from Sigma (St Louis, MO). The sequences

were: SCR: GCGCGCUUUGUAGGAUUCGTT; HIF2a-17: CGACCTGAAGATTGAAGTGAT; HIF2a-20:

CCATGAGGAGATTCGTGAGAA; PBRM1-94: CCGGAGTCTTTGATCTACAAA; PBRM1-890:

CCGGAATGCCAGGCACTATA; BAP1-71: CGTCCGTGATTGATGATGATA, BAP1-74: CCACAAC

TACGATGAGTTCAT; SETD2-30: CCTGAAGAATGATGAGATAAT; SETD2-32: GCCCTATGACTCTC

TTGGTTA; IRF9-69: GCCATACTCCACAGAATCTTA.

Nude mice xenograft analysis
All animal experiments were conducted in accordance with protocol 01462-935A approved by the

IACUC of Thomas Jefferson University and protocol 2015–11286 approved by the IACUC of Yale

University. The subcutaneous nude-mice xenograft assay was performed as described (Kondo et al.,

2002; Yan et al., 2007). For each cell line, 107 cells were injected subcutaneously into the flanks of

immunocompromised male nu/nu nude mice of four weeks old purchased from Taconic or Jackson

Laboratory. All mice were sacrificed by CO2 inhalation 8 to 10 weeks after injection of cells, and

tumors were excised and weighed. Results are reported as mean ±se. of the mean. Nine to ten pairs

of tumors were compared. Results were statistically evaluated with Mann–Whitney U statistic

analysis.

Immunohistochemistry staining and image analysis
4 mm paraffin slides were deparaffinized in Shandon Varistain Gemini ES Autostainer. Antigen

retrieval was performed with DAKO PTLink using Citrate Buffer (pH6.0) at 98 ˚C for a total time of

20 min. Primary immunostaining was performed using antibodies against Ki67 (abcam, Cat#:

ab16667, 1:200), Cleaved Caspase 3 (Cell-Signaling, cat#:9661, 1:500) and CD45 (BD Pharmingen,

Cat#: 550539, 1:200), BAP1 (Santa Cruz Biotech, sc-28383, 1:50), STAT2 (Bethyl A303-512A, 1:25),

IRF9 (Sigma, HPA001862, 1:50). Antibodies were incubated at room temperature for 30 min. Biotiny-

lated anti-Rabbit or anti-Rat (Vector Laboratories, cat#: BA-1000 and BA-4001) secondary antibodies

and ABC-HRP complexes (Vector Laboratories, Cat#: PK6100) were applied following the primary

antibodies with 30 min incubation of each reagent at room temperature. Three TBST washes were

performed between each step above. The signals were visualized using DAB substrate (DAKO, Cat#:

K3468). Slides were then washed with DI water and further processed with Hematoxylin counter

stain, dehydration and clearing in Shandon Varistain Gemini ES Autostainer and coverslipped with

Permount Mounting Medium.
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